An experimental investigation into the anisotropic behaviour of bovine femoral cortical bone

 

Show simple item record

dc.contributor.advisor Cloete, Trevor en_ZA
dc.contributor.advisor Ismail, Ernesto Bram en_ZA
dc.contributor.author Roginsky, Andrew en_ZA
dc.date.accessioned 2017-08-23T12:42:28Z
dc.date.available 2017-08-23T12:42:28Z
dc.date.issued 2017 en_ZA
dc.identifier.citation Roginsky, A. 2017. An experimental investigation into the anisotropic behaviour of bovine femoral cortical bone. University of Cape Town. en_ZA
dc.identifier.uri http://hdl.handle.net/11427/24916
dc.description.abstract To increase our level of knowledge of the human body for various applications, the behaviour of cortical bone needs to be understood. To understand and model the behaviour of cortical bone, knowledge of the strain rate dependent behaviour is required. Many authors have investigated these properties, however, the literature appears to be ambiguous and incomplete, with little focus being placed upon the intermediate strain rate regime (1s⁻¹ to 100s⁻¹). The ambiguity arises as each author presents an averaged data set which does not describe the level of scatter or precise testing methods, nor does it correspond with other authors work [33, 56, 27, 2, 62]. Furthermore, bone should display distinct anisotropic properties due to the microstructural layout. However, no author has published or recorded a complete data set detailing the anisotropy of bone across any species. The intermediate strain rate regime is of particular interest due to Paul [50], capturing a distinct transitional behaviour of cortical bone between low and high strain rates. The apparent lack in intermediate regime research is due to the difficulty in attaining constant strain rate testing conditions within this region using conventional methods. Consequently, due to the absence of data, no accurate model has been developed to simulate the behaviour observed. The focus of this dissertation will therefore be to redesign and fabricate the previously used intermediate strain rate testing device, provide an accurate data set across both quasi-static and dynamic regimes, and a phenomenological model which is able to capture this strain rate dependent behaviour. In order to develop an understanding of the scatter presented in each orientation, light microscopy, inverse light microscopy, and SEM of the specimens is performed. What is observed is that each orientation displays a distinct microstructural layout with fractures propagating in a distinctly different manner based on the strain rate regime. Furthermore, counter to previous findings, the strength of bone across a variety of samples does not appear consistent, however, the longitudinal and radial orientations still display strain rate sensitivity (per sample) which was captured using the improved phenomenological viscoelastic model. en_ZA
dc.language.iso eng en_ZA
dc.subject.other Mechanical Engineering en_ZA
dc.title An experimental investigation into the anisotropic behaviour of bovine femoral cortical bone en_ZA
dc.type Master Thesis
uct.type.publication Research en_ZA
uct.type.resource Thesis en_ZA
dc.publisher.institution University of Cape Town
dc.publisher.faculty Faculty of Engineering and the Built Environment
dc.publisher.department Blast Impact and Survivability Research Unit en_ZA
dc.type.qualificationlevel Masters
dc.type.qualificationname MSc (Eng) en_ZA
uct.type.filetype Text
uct.type.filetype Image
dc.identifier.apacitation Roginsky, A. (2017). <i>An experimental investigation into the anisotropic behaviour of bovine femoral cortical bone</i>. (Thesis). University of Cape Town ,Faculty of Engineering & the Built Environment ,Blast Impact and Survivability Research Unit. Retrieved from http://hdl.handle.net/11427/24916 en_ZA
dc.identifier.chicagocitation Roginsky, Andrew. <i>"An experimental investigation into the anisotropic behaviour of bovine femoral cortical bone."</i> Thesis., University of Cape Town ,Faculty of Engineering & the Built Environment ,Blast Impact and Survivability Research Unit, 2017. http://hdl.handle.net/11427/24916 en_ZA
dc.identifier.vancouvercitation Roginsky A. An experimental investigation into the anisotropic behaviour of bovine femoral cortical bone. [Thesis]. University of Cape Town ,Faculty of Engineering & the Built Environment ,Blast Impact and Survivability Research Unit, 2017 [cited yyyy month dd]. Available from: http://hdl.handle.net/11427/24916 en_ZA
dc.identifier.ris TY - Thesis / Dissertation AU - Roginsky, Andrew AB - To increase our level of knowledge of the human body for various applications, the behaviour of cortical bone needs to be understood. To understand and model the behaviour of cortical bone, knowledge of the strain rate dependent behaviour is required. Many authors have investigated these properties, however, the literature appears to be ambiguous and incomplete, with little focus being placed upon the intermediate strain rate regime (1s⁻¹ to 100s⁻¹). The ambiguity arises as each author presents an averaged data set which does not describe the level of scatter or precise testing methods, nor does it correspond with other authors work [33, 56, 27, 2, 62]. Furthermore, bone should display distinct anisotropic properties due to the microstructural layout. However, no author has published or recorded a complete data set detailing the anisotropy of bone across any species. The intermediate strain rate regime is of particular interest due to Paul [50], capturing a distinct transitional behaviour of cortical bone between low and high strain rates. The apparent lack in intermediate regime research is due to the difficulty in attaining constant strain rate testing conditions within this region using conventional methods. Consequently, due to the absence of data, no accurate model has been developed to simulate the behaviour observed. The focus of this dissertation will therefore be to redesign and fabricate the previously used intermediate strain rate testing device, provide an accurate data set across both quasi-static and dynamic regimes, and a phenomenological model which is able to capture this strain rate dependent behaviour. In order to develop an understanding of the scatter presented in each orientation, light microscopy, inverse light microscopy, and SEM of the specimens is performed. What is observed is that each orientation displays a distinct microstructural layout with fractures propagating in a distinctly different manner based on the strain rate regime. Furthermore, counter to previous findings, the strength of bone across a variety of samples does not appear consistent, however, the longitudinal and radial orientations still display strain rate sensitivity (per sample) which was captured using the improved phenomenological viscoelastic model. DA - 2017 DB - OpenUCT DP - University of Cape Town LK - https://open.uct.ac.za PB - University of Cape Town PY - 2017 T1 - An experimental investigation into the anisotropic behaviour of bovine femoral cortical bone TI - An experimental investigation into the anisotropic behaviour of bovine femoral cortical bone UR - http://hdl.handle.net/11427/24916 ER - en_ZA


Files in this item

This item appears in the following Collection(s)

Show simple item record