The effects of nitrogen and nickel on the microstructure and mechanical properties of 16 wt.% chromium stainless steels

 

Show simple item record

dc.contributor.advisor Knutsen, Robert D en_ZA
dc.contributor.author Hutchison, Ross en_ZA
dc.date.accessioned 2016-10-19T03:50:26Z
dc.date.available 2016-10-19T03:50:26Z
dc.date.issued 1991 en_ZA
dc.identifier.citation Hutchison, R. 1991. The effects of nitrogen and nickel on the microstructure and mechanical properties of 16 wt.% chromium stainless steels. University of Cape Town. en_ZA
dc.identifier.uri http://hdl.handle.net/11427/22175
dc.description Bibliography: pages 125-130. en_ZA
dc.description.abstract An investigation has been carried out on the effects of heat treatment on the microstructures and mechanical properties of a number of experimental 16 wt.% chromium dual-phase ferritic-martensitic stainless steels. A comparison was made between an alloy containing 2.5 wt.% nickel (low interstitial content [C + N = 0.03 wt%]), and three alloys possessing low nickel (0 - 1 wt.%) and high nitrogen contents (0.06 - 0.12 wt.%). Samples of AISI 304, 430 and 431 were included in the investigation for comparison with the experimental alloys. The microstructural response of the alloys to heat treatment was examined using light and scanning electron microscopy techniques. Tensile and Charpy V-notch impact tests were carried out on the alloys in their various heat treated conditions. Fracture surfaces, and deformation markings on the tensile gauge surface, were examined in the scanning electron microscope, while cross-sections of fracture surfaces were examined using light microscopy. Dilatometric traces were obtained for the experimental alloys in order to determine the effects of variations in composition on the inter-critical temperature range. The combination of good toughness and tensile strength that can be achieved in the low interstitial, nickel alloyed steel suggests that it could be a favourable alternative to both AISI 430 and 431 in many engineering applications. Toughness values superior to those of AISI 430 and 431 can be achieved in the high nitrogen stainless steels by tempering at 700°C, although the heat treatment results in a substantial loss in strength, and the low toughness exhibited by these alloys in the solution treated condition suggests that their weldability is no better than that of AISI 430 and 431. It is also shown that the formation of a lamellar ferrite/martensite compos.ite pha5e through intercritical annealing can provide attractive combinations of tensile strength, toughness and ductility in certain of the alloys. However, the ductility of alloys containing a lamellar composite phase is dependent on the o-ferrite content, and the toughness of the composite phase is adversely affected by a high nitrogen content. The yielding characteristics of ferritic-martensitic stainless steels are dependent on the hardness difference between the ferrite and martensite phases, and on the volume fraction of martensite. In addition, the morphology of the martensite phase exerts a strong influence on the ductility of dual phase steels. Microvoid initiation in the experimental alloys in the solution treated condition (1000°C/ lhour/air cool) occurs primarily by fracture within the martensite phase. In the 700°C tempered condition alloys having a high nitrogen content may be susceptible to intergranular fracture. en_ZA
dc.language.iso eng en_ZA
dc.subject.other Materials Engineering en_ZA
dc.title The effects of nitrogen and nickel on the microstructure and mechanical properties of 16 wt.% chromium stainless steels en_ZA
dc.type Master Thesis
uct.type.publication Research en_ZA
uct.type.resource Thesis en_ZA
dc.publisher.institution University of Cape Town
dc.publisher.faculty Faculty of Engineering and the Built Environment
dc.publisher.department Centre for Materials Engineering en_ZA
dc.type.qualificationlevel Masters
dc.type.qualificationname MSc (Eng) en_ZA
uct.type.filetype Text
uct.type.filetype Image
dc.identifier.apacitation Hutchison, R. (1991). <i>The effects of nitrogen and nickel on the microstructure and mechanical properties of 16 wt.% chromium stainless steels</i>. (Thesis). University of Cape Town ,Faculty of Engineering & the Built Environment ,Centre for Materials Engineering. Retrieved from http://hdl.handle.net/11427/22175 en_ZA
dc.identifier.chicagocitation Hutchison, Ross. <i>"The effects of nitrogen and nickel on the microstructure and mechanical properties of 16 wt.% chromium stainless steels."</i> Thesis., University of Cape Town ,Faculty of Engineering & the Built Environment ,Centre for Materials Engineering, 1991. http://hdl.handle.net/11427/22175 en_ZA
dc.identifier.vancouvercitation Hutchison R. The effects of nitrogen and nickel on the microstructure and mechanical properties of 16 wt.% chromium stainless steels. [Thesis]. University of Cape Town ,Faculty of Engineering & the Built Environment ,Centre for Materials Engineering, 1991 [cited yyyy month dd]. Available from: http://hdl.handle.net/11427/22175 en_ZA
dc.identifier.ris TY - Thesis / Dissertation AU - Hutchison, Ross AB - An investigation has been carried out on the effects of heat treatment on the microstructures and mechanical properties of a number of experimental 16 wt.% chromium dual-phase ferritic-martensitic stainless steels. A comparison was made between an alloy containing 2.5 wt.% nickel (low interstitial content [C + N = 0.03 wt%]), and three alloys possessing low nickel (0 - 1 wt.%) and high nitrogen contents (0.06 - 0.12 wt.%). Samples of AISI 304, 430 and 431 were included in the investigation for comparison with the experimental alloys. The microstructural response of the alloys to heat treatment was examined using light and scanning electron microscopy techniques. Tensile and Charpy V-notch impact tests were carried out on the alloys in their various heat treated conditions. Fracture surfaces, and deformation markings on the tensile gauge surface, were examined in the scanning electron microscope, while cross-sections of fracture surfaces were examined using light microscopy. Dilatometric traces were obtained for the experimental alloys in order to determine the effects of variations in composition on the inter-critical temperature range. The combination of good toughness and tensile strength that can be achieved in the low interstitial, nickel alloyed steel suggests that it could be a favourable alternative to both AISI 430 and 431 in many engineering applications. Toughness values superior to those of AISI 430 and 431 can be achieved in the high nitrogen stainless steels by tempering at 700°C, although the heat treatment results in a substantial loss in strength, and the low toughness exhibited by these alloys in the solution treated condition suggests that their weldability is no better than that of AISI 430 and 431. It is also shown that the formation of a lamellar ferrite/martensite compos.ite pha5e through intercritical annealing can provide attractive combinations of tensile strength, toughness and ductility in certain of the alloys. However, the ductility of alloys containing a lamellar composite phase is dependent on the o-ferrite content, and the toughness of the composite phase is adversely affected by a high nitrogen content. The yielding characteristics of ferritic-martensitic stainless steels are dependent on the hardness difference between the ferrite and martensite phases, and on the volume fraction of martensite. In addition, the morphology of the martensite phase exerts a strong influence on the ductility of dual phase steels. Microvoid initiation in the experimental alloys in the solution treated condition (1000°C/ lhour/air cool) occurs primarily by fracture within the martensite phase. In the 700°C tempered condition alloys having a high nitrogen content may be susceptible to intergranular fracture. DA - 1991 DB - OpenUCT DP - University of Cape Town LK - https://open.uct.ac.za PB - University of Cape Town PY - 1991 T1 - The effects of nitrogen and nickel on the microstructure and mechanical properties of 16 wt.% chromium stainless steels TI - The effects of nitrogen and nickel on the microstructure and mechanical properties of 16 wt.% chromium stainless steels UR - http://hdl.handle.net/11427/22175 ER - en_ZA


Files in this item

This item appears in the following Collection(s)

Show simple item record