## A study of integrability conditions for irrotational dust spacetimes

Doctoral Thesis

1998

##### Permanent link to this Item

##### Authors

##### Supervisors

##### Journal Title

##### Link to Journal

##### Journal ISSN

##### Volume Title

##### Publisher

##### Publisher

University of Cape Town

##### Faculty

##### License

##### Series

##### Abstract

This thesis examines consistency conditions for fluid solutions of the field equations of general relativity. The exact non-linear dynamic equations for a generic irrotational dust spacetime are consistent. To analyse conditions characterizing pure gravity waves, linearization instability in general relativity and consistency of the so-called "silent universes", further exact conditions are imposed locally on irrotational dust. These are classified into Class II conditions, which change evolution equations into constraint equations, and Class I and III conditions, which do not doso-rather they add a new constraint, leaving the propagation equations unchanged in form. Class I conditions are imposed on terms in the constraint equations, while Class II and III conditions are imposed on terms in the evolution equations. In the Class I case it is shown that for irrotational dust space times the divergence-free magnetic Weyl tensor and the divergence-free electric Weyl tensor (necessary conditions for gravity waves interacting with matter), both imply integrability conditions in the exact non-linear case. The integrability conditions for the divergence-free magnetic Weyl tensor are identically satisfied in the linearized perturbation case, but are non-trivial in the exact non-linear case. This leads to a linearization instability in these models. The integrability conditions for the divergence-free electric Weyltensor are non-trivial in both the linear and non-linear cases. The Class II case focuses on irrotational silent cosmological dust models characterized by vanishing magnetic Weyl tensor and vanishing electric Weyl tensor. In both these models there exist a series of integrability conditions that need to be satisfied. Integrability conditions for the zero magnetic Weyl tensor condition hold identically for linearized case, but are non-trivial in the exact non-linear case. Thus there is also a linearization instability. The zero electric Weyl tensor condition leads to a chain of non-trivial integrability conditions in both the linear and non-linear cases. Because of the complexity of the integrability conditions, it is highly unlikely that there is a large class of models in both the silent zero magnetic Weyl tensor case and the silent zero electric Weyl tensor case.

##### Description

Bibliography: pages 139-145.

#### Reference:

Lesame, W. 1998. A study of integrability conditions for irrotational dust spacetimes. University of Cape Town.