Methods for multi-spectral image fusion: identifying stable and repeatable information across the visible and infrared spectra

Master Thesis

2016

Permanent link to this Item
Authors
Journal Title
Link to Journal
Journal ISSN
Volume Title
Publisher
Publisher

University of Cape Town

License
Series
Abstract
Fusion of images captured from different viewpoints is a well-known challenge in computer vision with many established approaches and applications; however, if the observations are captured by sensors also separated by wavelength, this challenge is compounded significantly. This dissertation presents an investigation into the fusion of visible and thermal image information from two front-facing sensors mounted side-by-side. The primary focus of this work is the development of methods that enable us to map and overlay multi-spectral information; the goal is to establish a combined image in which each pixel contains both colour and thermal information. Pixel-level fusion of these distinct modalities is approached using computational stereo methods; the focus is on the viewpoint alignment and correspondence search/matching stages of processing. Frequency domain analysis is performed using a method called phase congruency. An extensive investigation of this method is carried out with two major objectives: to identify predictable relationships between the elements extracted from each modality, and to establish a stable representation of the common information captured by both sensors. Phase congruency is shown to be a stable edge detector and repeatable spatial similarity measure for multi-spectral information; this result forms the basis for the methods developed in the subsequent chapters of this work. The feasibility of automatic alignment with sparse feature-correspondence methods is investigated. It is found that conventional methods fail to match inter-spectrum correspondences, motivating the development of an edge orientation histogram (EOH) descriptor which incorporates elements of the phase congruency process. A cost function, which incorporates the outputs of the phase congruency process and the mutual information similarity measure, is developed for computational stereo correspondence matching. An evaluation of the proposed cost function shows it to be an effective similarity measure for multi-spectral information.
Description

Reference:

Collections