Numerical modelling of the coastal ocean off Tanzania

 

Show simple item record

dc.contributor.advisor Reason, Chris en_ZA
dc.contributor.author Manyilizu, Majuto Clement en_ZA
dc.date.accessioned 2016-03-17T12:46:26Z
dc.date.available 2016-03-17T12:46:26Z
dc.date.issued 2009 en_ZA
dc.identifier.citation Manyilizu, M. 2009. Numerical modelling of the coastal ocean off Tanzania. University of Cape Town. en_ZA
dc.identifier.uri http://hdl.handle.net/11427/17968
dc.description Includes bibliographical references (pages 71-89). en_ZA
dc.description.abstract In this model study of the coastal ocean off Tanzania, the Regional Ocean Modelling System (ROMS) was employed to model the coastal ocean off Tanzania over the domain of 5°N-15°S and 38-55°E. It was integrated for ten years with monthly mean Comprehensive Ocean and Atmosphere Data Sets (COADS) winds and heat fluxes. Initial and lateral boundary conditions were derived from the World Ocean Atlas. The model was used to simulate the annual cycle, and the sea surface temperature (SST) output compared with the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) sea surface temperature (SST) measurements for the same region. Although broadly comparable, the model SST was generally warmer than that of TMI data. The high SSTs in the Tanzanian coastal waters (greater than 28°C) occur from December to May while SSTs of less than 28°C occur during the rest of the year. The East African Coastal Current (EACC) experiences its lowest spatial and temporal average speeds (about 0.4ms- 1) in February and its maximum speed (1.7 ms⁻¹) in July. Speeds of greater than 1 ms⁻¹ occur during both transition seasons north of 6°S. The meridional wind stresses appear to be positively correlated with the EACC(r>0.6) in all locations and they are statistically significant (p<0.05). The annual cycle of the model flow in the southern Tanzanian waters seems to be positively correlated with the flow to the north of Madagascar (r=0.57 and p=O.O5). The flow in these regions changes in phase with each other from October to April and June to July with minimum speeds in November. For the other months, the flow in these regions is out of phase with each other. The model currents off southern Tanzania attain their maximum speeds in August when the South West monsoon is fully developed while the flow north of Madagascar attains its maximum speed in September when the South West monsoon fades. However, the flow in the southern Tanzanian waters is more affected by the reversal of winds over the tropical western Indian Ocean (r=0.69, p=0.01) than that north of Madagascar (r=0.51, p=0.09). This difference results in a larger annual speed range in the flow off southern Tanzania (about 0.4 ms⁻¹ ) than that to the north of Madagascar (about 0.3ms⁻¹). The ROMS model realistically simulates the annual cycle of the sea surface temperature and heat flux, the East African Coastal Current and the annual cycle of the flow entering the coastal ocean off the southern part of Tanzania. However, studies which integrate the large scale domain and regional coupled ocean-atmosphere interactions are needed to better understand of the East African climate and ocean variability. Such model results combined with suitable remote sensing and in situ observations will help improve understanding of the circulation and properties of the coastal ocean off Tanzania. en_ZA
dc.language.iso eng en_ZA
dc.subject.other Oceanography en_ZA
dc.title Numerical modelling of the coastal ocean off Tanzania en_ZA
dc.type Master Thesis
uct.type.publication Research en_ZA
uct.type.resource Thesis en_ZA
dc.publisher.institution University of Cape Town
dc.publisher.faculty Faculty of Science en_ZA
dc.publisher.department Department of Oceanography en_ZA
dc.type.qualificationlevel Masters
dc.type.qualificationname MSc en_ZA
uct.type.filetype Text
uct.type.filetype Image
dc.identifier.apacitation Manyilizu, M. C. (2009). <i>Numerical modelling of the coastal ocean off Tanzania</i>. (Thesis). University of Cape Town ,Faculty of Science ,Department of Oceanography. Retrieved from http://hdl.handle.net/11427/17968 en_ZA
dc.identifier.chicagocitation Manyilizu, Majuto Clement. <i>"Numerical modelling of the coastal ocean off Tanzania."</i> Thesis., University of Cape Town ,Faculty of Science ,Department of Oceanography, 2009. http://hdl.handle.net/11427/17968 en_ZA
dc.identifier.vancouvercitation Manyilizu MC. Numerical modelling of the coastal ocean off Tanzania. [Thesis]. University of Cape Town ,Faculty of Science ,Department of Oceanography, 2009 [cited yyyy month dd]. Available from: http://hdl.handle.net/11427/17968 en_ZA
dc.identifier.ris TY - Thesis / Dissertation AU - Manyilizu, Majuto Clement AB - In this model study of the coastal ocean off Tanzania, the Regional Ocean Modelling System (ROMS) was employed to model the coastal ocean off Tanzania over the domain of 5°N-15°S and 38-55°E. It was integrated for ten years with monthly mean Comprehensive Ocean and Atmosphere Data Sets (COADS) winds and heat fluxes. Initial and lateral boundary conditions were derived from the World Ocean Atlas. The model was used to simulate the annual cycle, and the sea surface temperature (SST) output compared with the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) sea surface temperature (SST) measurements for the same region. Although broadly comparable, the model SST was generally warmer than that of TMI data. The high SSTs in the Tanzanian coastal waters (greater than 28°C) occur from December to May while SSTs of less than 28°C occur during the rest of the year. The East African Coastal Current (EACC) experiences its lowest spatial and temporal average speeds (about 0.4ms- 1) in February and its maximum speed (1.7 ms⁻¹) in July. Speeds of greater than 1 ms⁻¹ occur during both transition seasons north of 6°S. The meridional wind stresses appear to be positively correlated with the EACC(r>0.6) in all locations and they are statistically significant (p<0.05). The annual cycle of the model flow in the southern Tanzanian waters seems to be positively correlated with the flow to the north of Madagascar (r=0.57 and p=O.O5). The flow in these regions changes in phase with each other from October to April and June to July with minimum speeds in November. For the other months, the flow in these regions is out of phase with each other. The model currents off southern Tanzania attain their maximum speeds in August when the South West monsoon is fully developed while the flow north of Madagascar attains its maximum speed in September when the South West monsoon fades. However, the flow in the southern Tanzanian waters is more affected by the reversal of winds over the tropical western Indian Ocean (r=0.69, p=0.01) than that north of Madagascar (r=0.51, p=0.09). This difference results in a larger annual speed range in the flow off southern Tanzania (about 0.4 ms⁻¹ ) than that to the north of Madagascar (about 0.3ms⁻¹). The ROMS model realistically simulates the annual cycle of the sea surface temperature and heat flux, the East African Coastal Current and the annual cycle of the flow entering the coastal ocean off the southern part of Tanzania. However, studies which integrate the large scale domain and regional coupled ocean-atmosphere interactions are needed to better understand of the East African climate and ocean variability. Such model results combined with suitable remote sensing and in situ observations will help improve understanding of the circulation and properties of the coastal ocean off Tanzania. DA - 2009 DB - OpenUCT DP - University of Cape Town LK - https://open.uct.ac.za PB - University of Cape Town PY - 2009 T1 - Numerical modelling of the coastal ocean off Tanzania TI - Numerical modelling of the coastal ocean off Tanzania UR - http://hdl.handle.net/11427/17968 ER - en_ZA


Files in this item

This item appears in the following Collection(s)

Show simple item record