Abstract:
The Hilbert space spline theory of Delvos and Schempp, and the reproducing kernel theory of L. Schwartz, provide the conceptual foundation and the construction procedure for rotation-invariant splines on Euclidean spaces, splines on the circle, and splines on the sphere and harmonic outside the sphere. Spherical splines and surface splines such as multi-conic functions, Hardy's multiquadric functions, pseudo-cubic splines, and thin-plate splines, are shown to be largely as effective as least squares collocation in representing geoid heights or gravity anomalies. A pseudo-cubic spline geoid for southern Africa is given, interpolating Doppler-derived geoid heights and astro-geodetic deflections of the vertical. Quadrature rules are derived for the thin-plate spline approximation (over a circular disk, and to a planar approximation) of Stokes's formula, the formulae of Vening Meinesz, and the L₁ vertical gradient operator in the analytical continuation series solution of Molodensky's problem.
Reference:
Van Gysen, H. 1988. Splines and local approximation of the earth's gravity field. University of Cape Town.
Bibliography: pages 214-220.