Temperatures in Excess of Critical Thresholds Threaten Nestling Growth and Survival in A Rapidly-Warming Arid Savanna: A Study of Common Fiscals

Frequency, duration, and intensity of hot-weather events are all predicted to increase with climate warming. Despite this, mechanisms by which temperature increases affect individual fitness and drive population-level changes are poorly understood. We investigated the link between daily maximum air temperature (t max ) and breeding success of Kalahari common fiscals ( Lanius collaris ) in terms of the daily effect on nestling body-mass gain, and the cumulative effect on size and age of fledglings. High t max reduced mass gain of younger, but not older nestlings and average nestling-period t max did not affect fledgling size. Instead, the frequency with which t max exceeded critical thresholds (t crit s) significantly reduced fledging body mass (t crit  = 33°C) and tarsus length (t crit  = 37°C), as well as delaying fledging (t crit  = 35°C). Nest failure risk was 4.2% per day therefore delays reduced fledging probability. Smaller size at fledging often correlates with reduced lifetime fitness and might also underlie documented adult body-size reductions in desert birds in relation to climate warming. Temperature thresholds above which organisms incur fitness costs are probably common, as physiological responses to temperature are non-linear. Understanding the shape of the relationship between temperature and fitness has implications for our ability to predict species’ responses to climate change.