Browsing by Subject "spatial distribution"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemOpen AccessTHE CENTRAL SLOPE OF DARK MATTER CORES IN DWARF GALAXIES: SIMULATIONS VERSUS THINGS(2011) Oh, Se-Heon; Brook, Chris; Governato, Fabio; Brinks, Elias; Mayer, Lucio; de Blok, W J G; Brooks, Alyson; Walter, FabianWe make a direct comparison of the derived dark matter (DM) distributions between hydrodynamical simulations of dwarf galaxies assuming ACDM cosmology and the observed dwarf galaxies sample from the THINGS survey in terms of (1) the rotation curve shape and (2) the logarithmic inner density slope a of mass density profiles. The simulations, which include the effect of baryonic feedback processes, such as gas cooling, star formation, cosmic UV background heating, and most importantly, physically motivated gas outflows driven by supernovae, form bulgeless galaxies with DM cores. We show that the stellar and baryonic mass is similar to that inferred from photometric and kinematic methods for galaxies of similar circular velocity. Analyzing the simulations in exactly the same way as the observational sample allows us to address directly the so-called cusp/core problem in the ACDM model. We show that the rotation curves of the simulated dwarf galaxies rise less steeply than cold dark matter rotation curves and are consistent with those of the THINGS dwarf galaxies. The mean value of the logarithmic inner density slopes alpha of the simulated galaxies' DM density profiles is similar to-0.4 +/- 0.1, which shows good agreement with alpha = -0.29 +/- 0.07 of the THINGS dwarf galaxies. The effect of non-circular motions is not significant enough to affect the results. This confirms that the baryonic feedback processes included in the simulations are efficiently able to make the initial cusps with alpha similar to-1.0 to -1.5 predicted by DM-only simulations shallower and induce DM halos with a central mass distribution similar to that observed in nearby dwarf galaxies.
- ItemOpen AccessThe impact of the gas distribution on the determination of dynamical masses of galaxies using unresolved observations(2014) de Blok, W J G; Walter, FabianDynamical mass (M dyn) is a key property of any galaxy, yet a determination of M dyn is not straightforward if spatially resolved measurements are not available. This situation occurs in single-dish H I observations of the local universe, but also frequently in high-redshift observations. M dyn measurements in high-redshift galaxies are commonly obtained through observations of the CO line, the most abundant tracer of the molecular medium. Even though in most cases the CO line width can be determined with reasonable accuracy, a measurement of the size of the emitting region is typically challenging given current facilities. We show how the integrated spectra ("global profiles") of a variety of galaxy models depend on the spatial distribution of the tracer gas as well as its velocity dispersion. We demonstrate that the choice of tracer emission line (e.g., H I tracing extended, "flat," emission versus CO tracing more compact, "exponential," emission) significantly affects the shape of the global profiles. In particular, in the case of high (~50 km s–1) velocity dispersions, compact tracers (such as CO) result in Gaussian-like (non-double-horned) profiles, as is indeed frequently seen in high-redshift observations. This leads to significantly different determinations of M dyn if different distributions of the tracer material ("flat" versus "exponential") are considered. We determine at which radii the rotation curve reaches the rotation velocity corresponding to the velocity width, and find that for each tracer this happens at a well-defined radius: H I velocity widths typically originate at ~5 optical scale lengths, while CO velocity widths trace the rotation velocity at ~2 scale lengths. We additionally explore other distributions to take into account that CO distributions at high redshift likely differ from those at low redshift. Our models, while not trying to reproduce individual galaxies, define characteristic radii that can be used in conjunction with the measured velocity widths in order to define dynamical masses consistent with the assumed gas distribution.