• English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
  • Communities & Collections
  • Browse OpenUCT
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
  1. Home
  2. Browse by Subject

Browsing by Subject "blood flow"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Open Access
    Cerebral Arterial Asymmetries in the Neonate: Insight into the Pathogenesis of Stroke
    (Multidisciplinary Digital Publishing Institute, 2022-02-24) van Vuuren, Anica Jansen; Saling, Michael; Rogerson, Sheryle; Anderson, Peter; Cheong, Jeanie; Solms, Mark
    Neonatal and adult strokes are more common in the left than in the right cerebral hemisphere in the middle cerebral arterial territory, and adult extracranial and intracranial vessels are systematically left-dominant. The aim of the research reported here was to determine whether the asymmetric vascular ground plan found in adults was present in healthy term neonates (n = 97). A new transcranial Doppler ultrasonography dual-view scanning protocol, with concurrent B-flow and pulsed wave imaging, acquired multivariate data on the neonatal middle cerebral arterial structure and function. This study documents for the first-time systematic asymmetries in the middle cerebral artery origin and distal trunk of healthy term neonates and identifies commensurately asymmetric hemodynamic vulnerabilities. A systematic leftward arterial dominance was found in the arterial caliber and cortically directed blood flow. The endothelial wall shear stress was also asymmetric across the midline and varied according to vessels’ geometry. We conclude that the arterial structure and blood supply in the brain are laterally asymmetric in newborns. Unfavorable shearing forces, which are a by-product of the arterial asymmetries described here, might contribute to a greater risk of cerebrovascular pathology in the left hemisphere.
UCT Libraries logo

Contact us

Jill Claassen

Manager: Scholarly Communication & Publishing

Email: openuct@uct.ac.za

+27 (0)21 650 1263

  • Open Access @ UCT

    • OpenUCT LibGuide
    • Open Access Policy
    • Open Scholarship at UCT
    • OpenUCT FAQs
  • UCT Publishing Platforms

    • UCT Open Access Journals
    • UCT Open Access Monographs
    • UCT Press Open Access Books
    • Zivahub - Open Data UCT
  • Site Usage

    • Cookie settings
    • Privacy policy
    • End User Agreement
    • Send Feedback

DSpace software copyright © 2002-2025 LYRASIS