Browsing by Subject "artificial neural networks"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemOpen AccessAdvanced analytics for process analysis of turbine plant and components(2019) Maharajh,Yashveer; Rousseau, Pieter; Mishra, AmitThis research investigates the use of an alternate means of modelling the performance of a train of feed water heaters in a steam cycle power plant, using machine learning. The goal of this study was to use a simple artificial neural network (ANN) to predict the behaviour of the plant system, specifically the inlet bled steam (BS) mass flow rate and the outlet water temperature of each feedwater heater. The output of the model was validated through the use of a thermofluid engineering model built for the same plant. Another goal was to assess the ability of both the thermofluid model and ANN model to predict plant behaviour under out of normal operating circumstances. The thermofluid engineering model was built on FLOWNEX® SE using existing custom components for the various heat exchangers. The model was then tuned to current plant conditions by catering for plant degradation and maintenance effects. The artificial neural network was of a multi-layer perceptron (MLP) type, using the rectified linear unit (ReLU) activation function, mean squared error (MSE) loss function and adaptive moments (Adam) optimiser. It was constructed using Python programming language. The ANN model was trained using the same data as the FLOWNEX® SE model. Multiple architectures were tested resulting in the optimum model having two layers, 200 nodes or neurons in each layer with a batch size of 500, running over 100 epochs. This configuration attained a training accuracy of 0.9975 and validation accuracy of 0.9975. When used on a test set and to predict plant performance, it achieved a MSE of 0.23 and 0.45 respectively. Under normal operating conditions (six cases tested) the ANN model performed better than the FLOWNEX® SE model when compared to actual plant behaviour. Under out of normal conditions (four cases tested), the FLOWNEX SE® model performed better than the ANN. It is evident that the ANN model was unable to capture the “physics” of a heat exchanger or the feed heating process as a result of its poor performance in the out of normal scenarios. Further tuning by way of alternate activation functions and regularisation techniques had little effect on the ANN model performance. The ANN model was able to accurately predict an out of normal case only when it was trained to do so. This was achieved by augmenting the original training data with the inputs and results from the FLOWNEX SE® model for the same case. The conclusion drawn from this study is that this type of simple ANN model is able to predict plant performance so long as it is trained for it. The validity of the prediction is highly dependent on the integrity of the training data. Operating outside the range which the model was trained for will result in inaccurate predictions. It is recommended that out of normal scenarios commonly experienced by the plant be synthesised by engineering modelling tools like FLOWNEX® SE to augment the historic plant data. This provides a wider spectrum of training data enabling more generalised and accurate predictions from the ANN model.
- ItemOpen AccessShort-term wind power forecasting using artificial neural networks-based ensemble model(2020) Chen,Qin; Folly, KomlaShort-term wind power forecasting is crucial for the efficient operation of power systems with high wind power penetration. Many forecasting approaches have been developed in the past to forecast short-term wind power. In recent years, artificial neural network-based approaches (ANNs) have been one of the most effective and popular approaches for short-term wind power forecasting because of the availability of large amounts of historical data and strong computational power. Although ANNs usually perform well for short-term wind power forecasting, further improvement can be obtained by selecting suitable input features, model parameters, and using forecasting techniques like spatial correlation and ensemble for ANNs. In this research, the effect of input features, model parameters, spatial correlation and ensemble techniques on short-term wind power forecasting performance of the ANNs models was evaluated. Pearson correlation coefficients between wind speed and other meteorological variables, together with a basic ANN model, were used to determine the impact of different input features on the forecasting performance of the ANNs. The effect of training sample resolution and training sample size on the forecasting performance was also investigated. To separately investigate the impact of the number of hidden layers and the number of hidden neurons on short-term wind power forecasting and to keep a single variable for each experiment, the same number of hidden neurons was used in each hidden layer. The ANNs with a total of 20 hidden neurons are shown to be sufficient for the nonlinear multivariate wind power forecasting problems faced in this dissertation. The ANNs with two hidden layers performed better than the one with a single hidden layer because additional hidden layer adds nonlinearity to the model. However, the ANNs with more than two hidden layers have the same or worse forecasting performance than the one with two hidden layers. ANNs with too many hidden layers and hidden neurons can overfit the training data. Spatial correlation technique was used to include meteorological variables from highly correlated neighbouring stations as input features to provide more surrounding information to the ANNs. The advantages of input features, model parameters, and spatial correlation and ensemble techniques were combined to form an ANN-based ensemble model to further enhance the forecasting performance from an individual ANN model. The simulation results show that all the available meteorological variables have different levels of impact on forecasting performance. Wind speed has the most significant impact on both short-term wind speed and wind power forecasting, whereas air temperature, barometric pressure, and air density have the smallest effects. The ANNs perform better with a higher data resolution and a significantly larger training sample size. However, one requires more computational power and a longer training time to train the model with a higher data resolution and a larger training sample size. Using the meteorological variables from highly related neighbouring stations do significantly improve the forecasting accuracy of target stations. It is shown that an ANNs-based ensemble model can further enhance the forecasting performance of an individual ANN by obtaining a large amount of surrounding meteorological information in parallel without encountering the overfitting issue faced by a single ANN model.