Browsing by Subject "Voxel-based morphometry"
- ItemOpen AccessThe BDNF p.Val66Met polymorphism, childhood trauma, and brain volumes in adolescents with alcohol abuse(BioMed Central, 2014-12-16) Dalvie, Shareefa; Stein, Dan J; Koenen, Karestan; Cardenas, Valerie; Cuzen, Natalie L; Ramesar, Raj; Fein, George; Brooks, Samantha JBackground: Previous studies have indicated that early life adversity, genetic factors and alcohol dependence are associated with reduced brain volume in adolescents. However, data on the interactive effects of early life adversity, genetic factors (e.g. p.Met66 allele of BDNF), and alcohol dependence, on brain structure in adolescents is limited. We examined whether the BDNF p.Val66Met polymorphism interacts with childhood trauma to predict alterations in brain volume in adolescents with alcohol use disorders (AUDs). Methods: We examined 160 participants (80 adolescents with DSM-IV AUD and 80 age- and gender-matched controls) who were assessed for trauma using the Childhood Trauma Questionnaire (CTQ). Magnetic resonance images were acquired for a subset of the cohort (58 AUD and 58 controls) and volumes of global and regional structures were estimated using voxel-based morphometry (VBM). Samples were genotyped for the p.Val66Met polymorphism using the TaqMan® Assay. Analysis of covariance (ANCOVA) and post-hoc t-tests were conducted using SPM8 VBM. Results: No significant associations, corrected for multiple comparisons, were found between the BDNF p.Val66Met polymorphism, brain volumes and AUD in adolescents with childhood trauma. Conclusions: These preliminary findings suggest that the BDNF p.Met66 allele and childhood trauma may not be associated with reduced structural volumes in AUD. Other genetic contributors should be investigated in future studies.
- ItemOpen AccessBDNF polymorphisms are linked to poorer working memory performance, reduced cerebellar and hippocampal volumes and differences in prefrontal cortex in a Swedish elderly population(Public Library of Science, 2014) Brooks, Samantha J; Nilsson, Emil K; Jacobsson, Josefin A; Stein, Dan J; Fredriksson, Robert; Lind, Lars; Schiöth, Helgi BBACKGROUND: Brain-derived neurotrophic factor (BDNF) links learning, memory and cognitive decline in elderly, but evidence linking BDNF allele variation, cognition and brain structural differences is lacking. METHODS: 367 elderly Swedish men (n = 181) and women (n = 186) from Prospective Investigation of the Vasculature in Uppsala seniors (PIVUS) were genotyped and the BDNF functional rs6265 SNP was further examined in subjects who completed the Trail Making Task (TMT), verbal fluency task, and had a magnetic resonance imaging (MRI) scan. Voxel-based morphometry (VBM) examined brain structure, cognition and links with BDNF. RESULTS: The functional BDNF SNP (rs6265,) predicted better working memory performance on the TMT with positive association of the Met rs6265, and was linked with greater cerebellar, precuneus, left superior frontal gyrus and bilateral hippocampal volume, and reduced brainstem and bilateral posterior cingulate volumes. CONCLUSIONS: The functional BDNF polymorphism influences brain volume in regions associated with memory and regulation of sensorimotor control, with the Met rs6265 allele potentially being more beneficial to these functions in the elderly.