Browsing by Subject "T helper cells"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- ItemOpen AccessBroadly neutralizing antibody responses in a large longitudinal sub-Saharan HIV primary infection cohort(Public Library of Science, 2016) Landais, Elise; Huang, Xiayu; Havenar-Daughton, Colin; Murrell, Ben; Price, Matt A; Wickramasinghe, Lalinda; Ramos, Alejandra; Bian, Charoan B; Simek, Melissa; Allen, Susan; Karita, Etienne; Kilembe, William; Lakhi, Shabir; Inambao, Mubiana; Kamali, Anatoli; Sanders, Eduard J; Anzala, Omu; Edward, Vinodh; Bekker, Linda-Gail; Tang, Jianming; Gilmour, Jill; Kosakovsky-Pond, Sergei L; Phung, Pham; Wrin, Terri; Crotty, Shane; Godzik, Adam; Poignard, PascalAuthor Summary Understanding how HIV-1-broadly neutralizing antibodies (bnAbs) develop during natural infection is essential to the design of an efficient HIV vaccine. We studied kinetics and correlates of neutralization breadth in a large sub-Saharan African longitudinal cohort of 439 participants with primary HIV-1 infection. Broadly nAb responses developed in 15% of individuals, on average three years after infection. Broad neutralization was associated with high viral load, low CD4+ T cell counts, virus subtype C infection and HLA*A3(-) genotype. A correlation with high overall plasma IgG levels and anti-Env binding titers was also found. Specificity mapping of the bnAb responses showed that glycan-dependent epitopes, in particular the N332 region, were most commonly targeted, in contrast to other bnAb epitopes, suggesting that the HIV Env N332-glycan epitope region may be a favorable target for vaccine design.
- ItemOpen AccessA comparative analysis of polyfunctional T cells and secreted cytokines induced by Bacille Calmette-Guerin immunisation in children and adults(Public Library of Science, 2012) Ritz, Nicole; Strach, Madeleine; Yau, Carmen; Dutta, Binita; Tebruegge, Marc; Connell, Tom G; Hanekom, Willem A; Britton, Warwick J; Robins-Browne, Roy; Curtis, NigelBCG vaccine is one of the most commonly-administered vaccines worldwide. Studies suggest the protective efficacy of BCG against TB is better for children than for adults. One potential explanation is that BCG induces a better protective immune response in children. Twenty six children and adults were immunised with BCG. The proportion of Th1-cytokine-producing mycobacterial-specific T cells, and the concentrations of secreted cytokines, were measured before and 10 weeks after BCG immunisation. A significant increase in the proportion of mycobacterial-specific cytokine-producing T cells was observed in both age groups. After BCG immunisation, children and adults had comparable proportions of mycobacterial-specific polyfunctional CD4 T cells when measured relative to the total number of CD4 T cells. However, relative to the subset of Th-1-cytokine-producing CD4 T cells, the proportion of polyfunctional cells was greater in children. Concentrations of secreted cytokines were comparable in children and adults. These findings suggest that the mycobacterial-specific cell-mediated immune response induced by BCG immunisation in children and adults is similar. The implication of a shift to a more polyfunctional immune response within the Th1-cytokine-producing CD4 T cells in children is uncertain as this aspect of the immune response has not been assessed as a potential correlate of protection against TB.
- ItemOpen AccessImpaired CD4 T cell memory response to Streptococcus pneumoniae precedes CD4 T cell depletion in HIV-infected Malawian adults(Public Library of Science, 2011) Glennie, Sarah J; Sepako, Enoch; Mzinza, David; Harawa, Visopo; Miles, David J C; Jambo, Kondwani C; Gordon, Stephen B; Williams, Neil A; Heyderman, Robert SObjective Invasive pneumococcal disease (IPD) is a leading cause of morbidity and mortality in HIV-infected African adults. CD4 T cell depletion may partially explain this high disease burden but those with relatively preserved T cell numbers are still at increased risk of IPD. This study evaluated the extent of pneumococcal-specific T cell memory dysfunction in asymptomatic HIV infection early on in the evolution of the disease. METHODS: Peripheral blood mononuclear cells were isolated from asymptomatic HIV-infected and HIV-uninfected Malawian adults and stained to characterize the underlying degree of CD4 T cell immune activation, senescence and regulation. Pneumococcal-specific T cell proliferation, IFN-γ, IL-17 production and CD154 expression was assessed using flow cytometry and ELISpot. RESULTS: We find that in asymptomatic HIV-infected Malawian adults, there is considerable immune disruption with an increase in activated and senescent CD4 + CD38 + PD-1 + and CD4 + CD25 high Foxp3 + Treg cells. In the context of high pneumococcal exposure and therefore immune stimulation, show a failure in pneumococcal-specific memory T cell proliferation, skewing of T cell cytokine production with preservation of interleukin-17 but decreased interferon-gamma responses, and failure of activated T cells to express the co-stimulatory molecule CD154. CONCLUSION: Asymptomatic HIV-infected Malawian adults show early signs of pneumococcal- specific immune dysregulation with a shift in the balance of CD4 memory, T helper 17 cells and Treg. Together these data offer a mechanistic understanding of how antigen-specific T cell dysfunction occurs prior to T cell depletion and may explain the early susceptibility to IPD in those with relatively preserved CD4 T cell numbers.
- ItemOpen AccessA quantitative analysis of complexity of human pathogen-specific CD4 T cell responses in healthy M. tuberculosis infected South Africans(Public Library of Science, 2016) Arlehamn, Cecilia S Lindestam; McKinney, Denise M; Carpenter, Chelsea; Paul, Sinu; Rozot, Virginie; Makgotlho, Edward; Gregg, Yolande; Van Rooyen, Michele; Ernst, Joel D; Hatherill, Mark; Hanekom, Willem A; Peters, Bjoern; Scriba, Thomas J; Sette, AlessandroAuthor Summary: Human pathogen-specific immune responses are tremendously complex and the techniques to study them ever expanding. There is an urgent need for a quantitative analysis and better understanding of pathogen-specific immune responses. Mycobacterium tuberculosis (Mtb) is one of the leading causes of mortality due to an infectious agent worldwide. Here, we were able to quantify the Mtb-specific response in healthy individuals with Mtb infection from South Africa. The response is highly diverse and 66 epitopes are required to capture 80% of the total reactivity. Our study also show that the majority of the identified epitopes are restricted by multiple HLA alleles. Thus, technical advances are required to capture and characterize the complete pathogen-specific response. This study demonstrates further that the approach combining identified epitopes into "megapools" allows capturing a large fraction of the total reactivity. This suggests that this technique is generally applicable to the characterization of immunity to other complex pathogens. Together, our data provide for the first time a quantitative analysis of the complex pathogen-specific T cell response and provide a new understanding of human infections in a natural infection setting.
- ItemOpen AccessA subset of circulating blood mycobacteria-specific CD4 T cells can predict the time to Mycobacterium tuberculosis sputum culture conversion(Public Library of Science, 2014) Riou, Catherine; Gray, Clive M; Lugongolo, Masixole; Gwala, Thabisile; Kiravu, Agano; Deniso, Pamela; Stewart-Isherwood, Lynsey; Omar, Shaheed Vally; Grobusch, Martin P; Coetzee, GerritWe investigated 18 HIV-negative patients with MDR-TB for M. tuberculosis (Mtb)- and PPD-specific CD4 T cell responses and followed them over 6 months of drug therapy. Twelve of these patients were sputum culture (SC) positive and six patients were SC negative upon enrollment. Our aim was to identify a subset of mycobacteria-specific CD4 T cells that would predict time to culture conversion. The total frequency of mycobacteria-specific CD4 T cells at baseline could not distinguish patients showing positive or negative SC. However, a greater proportion of late-differentiated (LD) Mtb- and PPD-specific memory CD4 T cells was found in SC positive patients than in those who were SC negative (p = 0.004 and p = 0.0012, respectively). Similarly, a higher co-expression of HLA-DR + Ki67 + on Mtb- and PPD-specific CD4 T cells could also discriminate between sputum SC positive versus SC negative (p = 0.004 and p = 0.001, respectively). Receiver operating characteristic (ROC) analysis revealed that baseline levels of Ki67 + HLA-DR + Mtb- and PPD-specific CD4 T cells were predictive of the time to sputum culture conversion, with area-under-the-curve of 0.8 (p = 0.027). Upon treatment, there was a significant decline of these Ki67 + HLA-DR + T cell populations in the first 2 months, with a progressive increase in mycobacteria-specific polyfunctional IFNγ + IL2 + TNFα + CD4 T cells over 6 months. Thus, a subset of activated and proliferating mycobacterial-specific CD4 T cells (Ki67 + HLA-DR + ) may provide a valuable marker in peripheral blood that predicts time to sputum culture conversion in TB patients at the start of treatment.