• English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
  • Communities & Collections
  • Browse OpenUCT
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
  1. Home
  2. Browse by Subject

Browsing by Subject "Statistical distributions"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Open Access
    New experiments and a model-driven approach for interpreting Middle Stone Age Lithic Point Function using the Edge Damage Distribution Method
    (Public Library of Science, 2016) Schoville, Benjamin J; Brown, Kyle S; Harris, Jacob A; Wilkins, Jayne
    The Middle Stone Age (MSA) is associated with early evidence for symbolic material culture and complex technological innovations. However, one of the most visible aspects of MSA technologies are unretouched triangular stone points that appear in the archaeological record as early as 500,000 years ago in Africa and persist throughout the MSA. How these tools were being used and discarded across a changing Pleistocene landscape can provide insight into how MSA populations prioritized technological and foraging decisions. Creating inferential links between experimental and archaeological tool use helps to establish prehistoric tool function, but is complicated by the overlaying of post-depositional damage onto behaviorally worn tools. Taphonomic damage patterning can provide insight into site formation history, but may preclude behavioral interpretations of tool function. Here, multiple experimental processes that form edge damage on unretouched lithic points from taphonomic and behavioral processes are presented. These provide experimental distributions of wear on tool edges from known processes that are then quantitatively compared to the archaeological patterning of stone point edge damage from three MSA lithic assemblages--Kathu Pan 1, Pinnacle Point Cave 13B, and Die Kelders Cave 1. By using a model-fitting approach, the results presented here provide evidence for variable MSA behavioral strategies of stone point utilization on the landscape consistent with armature tips at KP1, and cutting tools at PP13B and DK1, as well as damage contributions from post-depositional sources across assemblages. This study provides a method with which landscape-scale questions of early modern human tool-use and site-use can be addressed.
  • Loading...
    Thumbnail Image
    Item
    Open Access
    A variational Bayes approach to the analysis of occupancy models
    (Public Library of Science, 2016) Clark, Allan E; Altwegg, Res; Ormerod, John T
    Detection-nondetection data are often used to investigate species range dynamics using Bayesian occupancy models which rely on the use of Markov chain Monte Carlo (MCMC) methods to sample from the posterior distribution of the parameters of the model. In this article we develop two Variational Bayes (VB) approximations to the posterior distribution of the parameters of a single-season site occupancy model which uses logistic link functions to model the probability of species occurrence at sites and of species detection probabilities. This task is accomplished through the development of iterative algorithms that do not use MCMC methods. Simulations and small practical examples demonstrate the effectiveness of the proposed technique. We specifically show that (under certain circumstances) the variational distributions can provide accurate approximations to the true posterior distributions of the parameters of the model when the number of visits per site ( K ) are as low as three and that the accuracy of the approximations improves as K increases. We also show that the methodology can be used to obtain the posterior distribution of the predictive distribution of the proportion of sites occupied (PAO).
UCT Libraries logo

Contact us

Jill Claassen

Manager: Scholarly Communication & Publishing

Email: openuct@uct.ac.za

+27 (0)21 650 1263

  • Open Access @ UCT

    • OpenUCT LibGuide
    • Open Access Policy
    • Open Scholarship at UCT
    • OpenUCT FAQs
  • UCT Publishing Platforms

    • UCT Open Access Journals
    • UCT Open Access Monographs
    • UCT Press Open Access Books
    • Zivahub - Open Data UCT
  • Site Usage

    • Cookie settings
    • Privacy policy
    • End User Agreement
    • Send Feedback

DSpace software copyright © 2002-2025 LYRASIS