Browsing by Subject "Sequence analysis"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
- ItemOpen AccessBat accelerated regions identify a bat forelimb specific enhancer in the HoxD locus(Public Library of Science, 2016) Booker, Betty M; Friedrich, Tara; Mason, Mandy K; VanderMeer, Julia E; Zhao, Jingjing; Eckalbar, Walter L; Logan, Malcolm; Illing, Nicola; Pollard, Katherine S; Ahituv, NadavAuthor Summary: The limb is a classic example of vertebrate homology and is represented by a large range of morphological structures such as fins, legs and wings. The evolution of these structures could be driven by alterations in gene regulatory elements that have critical roles during development. To identify elements that may contribute to bat wing development, we characterized sequences that are conserved between vertebrates, but changed significantly in the bat lineage. We then overlapped these sequences with predicted developing limb enhancers as determined by ChIP-seq, finding 166 bat accelerated sequences (BARs). Five BARs that were tested for enhancer activity in mice all drove expression in the limb. Testing the mouse orthologous sequence showed that three had differences in their limb enhancer activity as compared to the bat sequence. Of these, BAR116 was of particular interest as it is located near the HoxD locus, an essential gene complex required for proper spatiotemporal patterning of the developing limb. The bat BAR116 sequence drove robust forelimb expression but the mouse BAR116 sequence did not show enhancer activity. These experiments correspond to analyses of HoxD gene expressions in developing bat limbs, which had strong forelimb versus weak hindlimb expression for Hoxd10 - 11 . Combined, our studies highlight specific genomic regions that could be important in shaping the morphological differences that led to the development of the bat wing.
- ItemOpen AccessComparison of a real-time multiplex PCR and sequetyping assay for pneumococcal serotyping(Public Library of Science, 2015) Dube, Felix S; van Mens, Suzan P; Robberts, Lourens; Wolter, Nicole; Nicol, Paul; Mafofo, Joseph; Africa, Samantha; Zar, Heather J; Nicol, Mark PBACKGROUND: Pneumococcal serotype identification is essential to monitor pneumococcal vaccine effectiveness and serotype replacement. Serotyping by conventional serological methods are costly, labour-intensive, and require significant technical expertise. We compared two different molecular methods to serotype pneumococci isolated from the nasopharynx of South African infants participating in a birth cohort study, the Drakenstein Child Health Study, in an area with high 13-valent pneumococcal conjugate vaccine (PCV13) coverage. METHODS: A real-time multiplex PCR (rmPCR) assay detecting 21 different serotypes/-groups and a sequetyping assay, based on the sequence of the wzh gene within the pneumococcal capsular locus, were compared. Forty pneumococcal control isolates, with serotypes determined by the Quellung reaction, were tested. In addition, 135 pneumococcal isolates obtained from the nasopharynx of healthy children were tested by both serotyping assays and confirmed by Quellung testing. Discordant results were further investigated by whole genome sequencing of four isolates. RESULTS: Of the 40 control isolates tested, 25 had a serotype covered by the rmPCR assay. These were all correctly serotyped/-grouped. Sequetyping PCR failed in 7/40 (18%) isolates. For the remaining isolates, sequetyping assigned the correct serotype/-group to 29/33 (88%) control isolates. Of the 132/135 (98%) nasopharyngeal pneumococcal isolates that could be typed, 69/132 (52%) and 112/132 (85%) were assigned the correct serotype/-group by rmPCR and sequetyping respectively. The serotypes of 63/132 (48%) isolates were not included in the rmPCR panel. All except three isolates (serotype 25A and 38) were theoretically amplified and differentiated into the correct serotype/-group with some strains giving ambigous results (serotype 13/20, 17F/33C, and 11A/D/1818F). Of the pneumococcal serotypes detected in this study, 69/91 (76%) were not included in the current PCV13. The most frequently identified serotypes were 11A, 13, 15B/15C, 16F and 10A. CONCLUSION: The rmPCR assay performed well for the 21 serotypes/-groups included in the assay. However, in our study setting, a large proportion of serotypes were not detected by rmPCR. The sequetyping assay performed well, but did misassign specific serotypes. It may be useful for regions where vaccine serotypes are less common, however confirmatory testing is advisable.
- ItemOpen AccessEvolutionary time-scale of the begomoviruses: evidence from integrated sequences in the Nicotiana genome(Public Library of Science, 2011) Lefeuvre, Pierre; Harkins, Gordon W; Lett, Jean-Michel; Briddon, Rob W; Chase, Mark W; Moury, Benoit; Martin, Darren PDespite having single stranded DNA genomes that are replicated by host DNA polymerases, viruses in the family Geminiviridae are apparently evolving as rapidly as some RNA viruses. The observed substitution rates of geminiviruses in the genera Begomovirus and Mastrevirus are so high that the entire family could conceivably have originated less than a million years ago (MYA). However, the existence of geminivirus related DNA (GRD) integrated within the genomes of various Nicotiana species suggests that the geminiviruses probably originated >10 MYA. Some have even suggested that a distinct New-World (NW) lineage of begomoviruses may have arisen following the separation by continental drift of African and American proto-begomoviruses ∼110 MYA. We evaluate these various geminivirus origin hypotheses using Bayesian coalescent-based approaches to date firstly the Nicotiana GRD integration events, and then the divergence of the NW and Old-World (OW) begomoviruses. Besides rejecting the possibility of a<2 MYA OW-NW begomovirus split, we could also discount that it may have occurred concomitantly with the breakup of Gondwanaland 110 MYA. Although we could only confidently narrow the date of the split down to between 2 and 80 MYA, the most plausible (and best supported) date for the split is between 20 and 30 MYA - a time when global cooling ended the dispersal of temperate species between Asia and North America via the Beringian land bridge.
- ItemOpen AccessFeatures of recently transmitted HIV-1 clade C viruses that impact antibody recognition: implications for active and passive immunization(Public Library of Science, 2016) Rademeyer, Cecilia; Korber, Bette; Seaman, Michael S; Giorgi, Elena E; Thebus, Ruwayhida; Robles, Alexander; Sheward, Daniel J; Wagh, Kshitij; Garrity, Jetta; Carey, Brittany R; Gao, Hongmei; Greene, Kelli M; Tang, Haili; Bandawe, Gama P; Marais, Jinny C; Diphoko, Thabo E; Hraber, Peter; Tumba, Nancy; Moore, Penny L; Gray, Glenda E; Kublin, James; McElrath, M Juliana; Vermeulen, Marion; Middelkoop, Keren; Bekker, Linda-Gail; Hoelscher, Michael; Maboko, Leonard; Makhema, Joseph; Robb, Merlin L; Karim, Salim Abdool; Karim, Quarraisha Abdool; Kim, Jerome H; Hahn, Beatrice H; Gao, Feng; Swanstrom, Ronald; Morris, Lynn; Montefiori, David C; Williamson, CarolynAuthor Summary: Vaccine and passive immunization prophylactic trials that rely on antibody-mediated protection are planned for HIV-1 clade C epidemic regions of southern Africa, which have amongst the highest HIV-1 incidences globally. This includes a phase 2b trial of passively administered monoclonal antibody, VRC01; as well as a phase 3 trial using the clade C modified version of the partially efficacious RV144 vaccine. The extraordinary diversity of HIV-1 poses a major obstacle to these interventions, and our study aimed to determine the implications of viral diversity on antibody recognition. Investigations using our panel of very early viruses augment current knowledge of vulnerable targets on transmitted viruses for vaccine design and passive immunization studies. Evidence of antigenic drift with viruses becoming more resistant over time suggests that these prevention modalities will need to be updated over time and that combinations of antibodies will be necessary to achieve coverage in passive immunization studies. We further show that it may be more difficult to obtain protection in the genetically diverse clade C epidemic compared to RV144 where the epidemic is less diverse, although it should be noted that the correlates of infection risk are yet to be defined in the clade C setting.
- ItemOpen AccessGeneration of genic diversity among Streptococcus pneumoniae strains via horizontal gene transfer during a chronic polyclonal pediatric infection(Public Library of Science, 2010) Hiller, N Luisa; Ahmed, Azad; Powell, Evan; Martin, Darren P; Eutsey, Rory; Earl, Josh; Janto, Benjamin; Boissy, Robert J; Hogg, Justin; Barbadora, KarenAlthough there is tremendous interest in understanding the evolutionary roles of horizontal gene transfer (HGT) processes that occur during chronic polyclonal infections, to date there have been few studies that directly address this topic. We have characterized multiple HGT events that most likely occurred during polyclonal infection among nasopharyngeal strains of Streptococcus pneumoniae recovered from a child suffering from chronic upper respiratory and middle-ear infections. Whole genome sequencing and comparative genomics were performed on six isolates collected during symptomatic episodes over a period of seven months. From these comparisons we determined that five of the isolates were genetically highly similar and likely represented a dominant lineage. We analyzed all genic and allelic differences among all six isolates and found that all differences tended to occur within contiguous genomic blocks, suggestive of strain evolution by homologous recombination. From these analyses we identified three strains (two of which were recovered on two different occasions) that appear to have been derived sequentially, one from the next, each by multiple recombination events. We also identified a fourth strain that contains many of the genomic segments that differentiate the three highly related strains from one another, and have hypothesized that this fourth strain may have served as a donor multiple times in the evolution of the dominant strain line. The variations among the parent, daughter, and grand-daughter recombinant strains collectively cover greater than seven percent of the genome and are grouped into 23 chromosomal clusters. While capturing in vivo HGT, these data support the distributed genome hypothesis and suggest that a single competence event in pneumococci can result in the replacement of DNA at multiple non-adjacent loci.
- ItemOpen AccessMolecular mechanisms of recombination restriction in the envelope gene of the human immunodeficiency virus(Public Library of Science, 2009) Simon-Loriere, Etienne; Galetto, Roman; Hamoudi, Meriem; Archer, John; Lefeuvre, Pierre; Martin, Darren P; Robertson, David L; Negroni, MatteoAuthor Summary Recombination allows mixing portions of genomes of different origins, generating chimeric genes and genomes. With respect to the random generation of new mutations, it can lead to the simultaneous insertion of several substitutions, introducing more drastic changes in the genome. Furthermore, recombination is expected to yield a higher proportion of functional products since it combines variants that already exist in the population and that are therefore compatible with the survival of the organism. However, when recombination involves genetically distant strains, it can be constrained by the necessity to retain the functionality of the resulting products. In pathogens, which are subjected to strong selective pressures, recombination is particularly important, and several viruses, such as the human immunodeficiency virus (HIV), readily recombine. Here, we demonstrate the existence of preferential regions for recombination in the HIV-1 envelope gene when crossing sequences representative of strains observed to recombine in vivo. Furthermore, some recombinants give a decreased proportion of functional products. When considering these factors, one can retrace the history of most natural HIV recombinants. Recombination in HIV appears not so unpredictable, therefore, and the existence of recombinants that frequently generate nonfunctional products highlights previously unappreciated limits of the genetic flexibility of HIV.
- ItemOpen AccessNo evidence for selection of HIV-1 with enhanced Gag-Protease or Nef function among breakthrough infections in the CAPRISA 004 tenofovir microbicide trial(Public Library of Science, 2013) Chopera, Denis R; Mann, Jaclyn K; Mwimanzi, Philip; Omarjee, Saleha; Kuang, Xiaomei T; Ndabambi, Nonkululeko; Goodier, Sarah; Martin, Eric; Naranbhai, Vivek; Karim, Salim AbdoolBACKGROUND: Use of antiretroviral-based microbicides for HIV-1 prophylaxis could introduce a transmission barrier that inadvertently facilitates the selection of fitter viral variants among incident infections. To investigate this, we assessed the in vitro function of gag-protease and nef sequences from participants who acquired HIV-1 during the CAPRISA 004 1% tenofovir microbicide gel trial. Methods and RESULTS: We isolated the earliest available gag-protease and nef gene sequences from 83 individuals and examined their in vitro function using recombinant viral replication capacity assays and surface protein downregulation assays, respectively. No major phylogenetic clustering and no significant differences in gag-protease or nef function were observed in participants who received tenofovir gel versus placebo gel prophylaxis. CONCLUSION: Results indicate that the partial protective effects of 1% tenofovir gel use in the CAPRISA 004 trial were not offset by selection of transmitted/early HIV-1 variants with enhanced Gag-Protease or Nef fitness.
- ItemOpen AccessPhylogenetic exploration of nosocomial transmission chains of 2009 influenza A/H1N1 among children admitted at Red Cross War Memorial Children's Hospital, Cape Town, South Africa in 2011(Public Library of Science, 2015) Valley-Omar, Ziyaad; Nindo, Fredrick; Mudau, Maanda; Hsiao, Marvin; Martin, Darren PatrickTraditional modes of investigating influenza nosocomial transmission have entailed a combination of confirmatory molecular diagnostic testing and epidemiological investigation. Common hospital-acquired infections like influenza require a discerning ability to distinguish between viral isolates to accurately identify patient transmission chains. We assessed whether influenza hemagglutinin sequence phylogenies can be used to enrich epidemiological data when investigating the extent of nosocomial transmission over a four-month period within a paediatric Hospital in Cape Town South Africa. Possible transmission chains/channels were initially determined through basic patient admission data combined with Maximum likelihood and time-scaled Bayesian phylogenetic analyses. These analyses suggested that most instances of potential hospital-acquired infections resulted from multiple introductions of Influenza A into the hospital, which included instances where virus hemagglutinin sequences were identical between different patients. Furthermore, a general inability to establish epidemiological transmission linkage of patients/viral isolates implied that identified isolates could have originated from asymptomatic hospital patients, visitors or hospital staff. In contrast, a traditional epidemiological investigation that used no viral phylogenetic analyses, based on patient co-admission into specific wards during a particular time-frame, suggested that multiple hospital acquired infection instances may have stemmed from a limited number of identifiable index viral isolates/patients. This traditional epidemiological analysis by itself could incorrectly suggest linkage between unrelated cases, underestimate the number of unique infections and may overlook the possible diffuse nature of hospital transmission, which was suggested by sequencing data to be caused by multiple unique introductions of influenza A isolates into individual hospital wards. We have demonstrated a functional role for viral sequence data in nosocomial transmission investigation through its ability to enrich traditional, non-molecular observational epidemiological investigation by teasing out possible transmission pathways and working toward more accurately enumerating the number of possible transmission events.
- ItemOpen AccessThe spread of Tomato yellow leaf curl virus from the Middle East to the world(Public Library of Science, 2010) Lefeuvre, Pierre; Martin, Darren P; Harkins, Gordon; Lemey, Philippe; Gray, Alistair J A; Meredith, Sandra; Lakay, Francisco; Monjane, Adérito; Lett, Jean-Michel; Varsani, ArvindAuthor Summary Tomato yellow leaf curl virus (TYLCV) poses a serious threat to tomato production throughout the temperate regions of the world. Our analysis, using a suite of bioinformatic tools applied to all publically available TYLCV genome sequences, suggests that the virus probably arose somewhere in the Middle East between the 1930s and 1950s and that its global spread only began in the 1980s after the emergence of two strains - TYLCV-Mld and -IL. In agreement with others, we also find that the highly invasive TYLCV-IL strain has jumped at least twice to the Americas - once from the Mediterranean basin in the early 1990s and once from Asia in the early 2000s. Although our results corroborate historical accounts of TYLCV-like symptoms in tomato crops in the Jordan Valley in the late 1920s, they indicate that the region around Iran is both the current center of TYLCV diversity and is the site where the most intensive ongoing TYLCV evolution is taking place. However, our analysis indicates that this region is epidemiologically isolated suggesting that novel TYLCV variants found there are probably not direct global threats. Moreover, we identify the Mediterranean basin as the main launch-pad of global TYLCV movements.