Browsing by Subject "Sequence Analysis, DNA"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemOpen AccessEvidence of HIV-1 adaptation to host HLA alleles following chimp-to-human transmission(BioMed Central Ltd, 2009) Ngandu, Nobubelo; Seoighe, Cathal; Scheffler, KonradBACKGROUND:The cytotoxic T-lymphocyte immune response is important in controlling HIV-1 replication in infected humans. In this immune pathway, viral peptides within infected cells are presented to T-lymphocytes by the polymorphic human leukocyte antigens (HLA). HLA alleles exert selective pressure on the peptide regions and immune escape mutations that occur at some of the targeted sites can enable the virus to adapt to the infected host. The pattern of ongoing immune escape and reversion associated with several human HLA alleles has been studied extensively. Such mutations revert upon transmission to a host without the HLA allele because the escape mutation incurs a fitness cost. However, to-date there has been little attempt to study permanent loss of CTL epitopes due to escape mutations without an effect on fitness. RESULTS: Here, we set out to determine the extent of adaptation of HIV-1 to three well-characterized HLA alleles during the initial exposure of the virus to the human cytotoxic immune responses following transmission from chimpanzee. We generated a chimpanzee consensus sequence to approximate the virus sequence that was initially transmitted to the human host and used a method based on peptide binding affinity to HLA crystal structures to predict peptides that were potentially targeted by the HLA alleles on this sequence. Next, we used codon-based phylogenetic models to quantify the average selective pressure that acted on these regions during the period immediately following the zoonosis event, corresponding to the branch of the phylogenetic tree leading to the common ancestor of all of the HIV-1 sequences. Evidence for adaptive evolution during this period was observed at regions recognised by HLA A*6801 and A*0201, both of which are common in African populations. No evidence of adaptive evolution was observed at sites targeted by HLA-B*2705, which is a rare allele in African populations. CONCLUSION: Our results suggest that the ancestral HIV-1 virus experienced a period of positive selective pressure due to immune responses associated with HLA alleles that were common in the infected human population. We propose that this resulted in permanent escape from immune responses targeting unconstrained regions of the virus.
- ItemOpen AccessMaternal blood contamination of collected cord blood can be identified using DNA methylation at three CpGs(2017) Jones, Meaghan JAbstract Background Cord blood is a commonly used tissue in environmental, genetic, and epigenetic population studies due to its ready availability and potential to inform on a sensitive period of human development. However, the introduction of maternal blood during labor or cross-contamination during sample collection may complicate downstream analyses. After discovering maternal contamination of cord blood in a cohort study of 150 neonates using Illumina 450K DNA methylation (DNAm) data, we used a combination of linear regression and random forest machine learning to create a DNAm-based screening method. We identified a panel of DNAm sites that could discriminate between contaminated and non-contaminated samples, then designed pyrosequencing assays to pre-screen DNA prior to being assayed on an array. Results Maternal contamination of cord blood was initially identified by unusual X chromosome DNA methylation patterns in 17 males. We utilized our DNAm panel to detect contaminated male samples and a proportional amount of female samples in the same cohort. We validated our DNAm screening method on an additional 189 sample cohort using both pyrosequencing and DNAm arrays, as well as 9 publically available cord blood 450K data sets. The rate of contamination varied from 0 to 10% within these studies, likely related to collection specific methods. Conclusions Maternal blood can contaminate cord blood during sample collection at appreciable levels across multiple studies. We have identified a panel of markers that can be used to identify this contamination, either post hoc after DNAm arrays have been completed, or in advance using a targeted technique like pyrosequencing.
- ItemOpen AccessA rapid method for detection of five known mutations associated with aminoglycoside-induced deafness(BioMed Central Ltd, 2009) Bardien, Soraya; Human, Hannique; Harris, Tashneem; Hefke, Gwynneth; Veikondis, Rene; Schaaf, H Simon; van der Merwe, Lize; Greinwald, John; Fagan, Johan; de Jong, GreetjeBACKGROUND:South Africa has one of the highest incidences of multidrug-resistant tuberculosis (MDR-TB) in the world. Concomitantly, aminoglycosides are commonly used in this country as a treatment against MDR-TB. To date, at least five mutations are known to confer susceptibility to aminoglycoside-induced hearing loss. The aim of the present study was to develop a rapid screening method to determine whether these mutations are present in the South African population. METHODS: A multiplex method using the SNaPshot technique was used to screen for five mutations in the MT-RNR1 gene: A1555G, C1494T, T1095C, 961delT+C(n) and A827G. A total of 204 South African control samples, comprising 98 Mixed ancestry and 106 Black individuals were screened for the presence of the five mutations. RESULTS: A robust, cost-effective method was developed that detected the presence of all five sequence variants simultaneously. In this pilot study, the A1555G mutation was identified at a frequency of 0.9% in the Black control samples. The 961delT+C(n) variant was present in 6.6% of the Black controls and 2% of the Mixed ancestry controls. The T1095C, C1494T and A827G variants were not identified in any of the study participants. CONCLUSION: The frequency of 0.9% for the A1555G mutation in the Black population in South Africa is of concern given the high incidence of MDR-TB in this particular ethnic group. Future larger studies are warranted to determine the true frequencies of the aminoglycoside deafness mutations in the general South African population. The high frequencies of the 961delT+C(n) variant observed in the controls suggest that this change is a common non-pathogenic polymorphism. This genetic method facilitates the identification of individuals at high risk of developing hearing loss prior to the start of aminoglycoside therapy. This is important in a low-resource country like South Africa where, despite their adverse side-effects, aminoglycosides will continue to be used routinely and are accompanied with very limited or no audiological monitoring.