Browsing by Subject "Sarcoplasmic Reticulum"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- ItemOpen AccessA Remarkably Stable Phosphorylated Form of Ca 2+ -ATPase Prepared from Ca 2+ -loaded and Fluorescein Isothiocyanate-labeled Sarcoplasmic Reticulum Vesicles(2001) Champeil, Philippe; Henao, Fernando; Lacapère, Jean-Jacques; McIntosh, David BAfter the nucleotide binding domain in sarcoplasmic reticulum Ca2+-ATPase has been derivatized with fluorescein isothiocyanate at Lys-515, ATPase phosphorylation in the presence of a calcium gradient, with Ca2+ on the lumenal side but without Ca2+ on the cytosolic side, results in the formation of a species that exhibits exceptionally low probe fluorescence (Pick, U. (1981) FEBS Lett. 123, 131-136). We show here that, as long as the free calcium concentration on the cytosolic side is kept in the nanomolar range, this low fluorescence species is remarkably stable, even when the calcium gradient is subsequently dissipated by ionophore. This species is a Ca2+-free phosphorylated species. The kinetics of Ca2+ binding to it indicates that its transport sites are exposed to the cytosolic side of the membrane and retain a high affinity for Ca2+. Thus, in the ATPase catalytic cycle, an intrinsically transient phosphorylated species with transport sites occupied but not yet occluded must also have been stabilized by fluorescein isothiocyanate (FITC), possibly mimicking ADP. The low fluorescence mainly results from a change in FITC absorption. The Ca2+-free low fluorescence FITC-ATPase species remains stable after addition of thapsigargin in the absence or presence of decavanadate, or after solubilization with dodecylmaltoside. The remarkable stability of this phosphoenzyme species and the changes in FITC spectroscopic properties are discussed in terms of a putative FITC-mediated link between the nucleotide binding domain and the phosphorylation domain in Ca2+-ATPase, and the possible formation of a transition state-like conformation with a compact cytosolic head. These findings might open a path toward structural characterization of a stable phosphorylated form of Ca2+-ATPase for the first time, and thus to further insights into the pump's mechanism.
- ItemOpen AccessCritical Interaction of Actuator Domain Residues Arginine 174, Isoleucine 188, and Lysine 205 with Modulatory Nucleotide in Sarcoplasmic Reticulum Ca 2+ -ATPase(2008) Clausen, Johannes D; McIntosh, David B; Woolley, David G; Andersen, Jens PeterATP plays dual roles in the reaction cycle of the sarcoplasmic reticulum Ca2+-ATPase by acting as the phosphorylating substrate as well as in nonphosphorylating (modulatory) modes accelerating conformational transitions of the enzyme cycle. Here we have examined the involvement of actuator domain residues Arg174, Ile188, Lys204, and Lys205 by mutagenesis. Alanine mutations to these residues had little effect on the interaction of the Ca2E1 state with nucleotide or on the HnE 2 to Ca2E1 transition of the dephosphoenzyme. The phosphoenzyme processing steps, Ca2E1P to E2P and E2P dephosphorylation, and their stimulation by MgATP/ATP were markedly affected by mutations to Arg174, Ile188, and Lys205. Replacement of Ile188 with alanine abolished nucleotide modulation of dephosphorylation but not the modulation of the Ca2E1P to E2P transition. Mutation to Arg174 interfered with nucleotide modulation of either of the phosphoenzyme processing steps, indicating a significant overlap between the modulatory nucleotide-binding sites involved. Mutation to Lys205 enhanced the rates of the phosphoenzyme processing steps in the absence of nucleotide and disrupted the nucleotide modulation of the Ca2E1P to E2P transition. Remarkably, the mutants with alterations to Lys205 showed an anomalous inhibition by ATP of the dephosphorylation, and in the alanine mutant the affinity for the inhibition by ATP was indistinguishable from that for stimulation by ATP of the wild type. Hence, the actuator domain is an important player in the function of ATP as modulator of phosphoenzyme processing, with Arg174, Ile188, and Lys205 all being critically involved, although in different ways. The data support a variable site model for the modulatory effects with the nucleotide binding somewhat differently in each of the conformational states occurring during the transport cycle.
- ItemOpen AccessImportance of Conserved N-domain Residues Thr 441 , Glu 442 , Lys 515 , Arg 560 , and Leu 562 of Sarcoplasmic Reticulum Ca 2+ -ATPase for MgATP Binding and Subsequent Catalytic Steps: PLASTICITY OF THE NUCLEOTIDE-BINDING SITE(2003) Clausen, Johannes D; McIntosh, David B; Vilsen, Bente; Woolley, David G; Andersen, Jens PeterNine single mutations were introduced to amino acid residues Thr441, Glu442, Lys515, Arg560, Cys561, and Leu562 located in the nucleotide-binding domain of sarcoplasmic reticulum Ca2+-ATPase, and the functional consequences were studied in a direct nucleotide binding assay, as well as by steady-state and transient kinetic measurements of the overall and partial reactions of the transport cycle. Some partial reaction steps were also examined in mutants with alterations to Phe487, Arg489, and Lys492. The results implicate all these residues, except Cys561, in high affinity nucleotide binding at the substrate site. Mutations Thr441 --> Ala, Glu442 --> Ala, and Leu562 --> Phe were more detrimental to MgATP binding than to ATP binding, thus pointing to a role for these residues in the binding of Mg2+ or to a difference between the interactions with MgATP and ATP. Subsequent catalytic steps were also selectively affected by the mutations, showing the involvement of the nucleotide-binding domain in these reactions. Mutation of Arg560 inhibited phosphoryl transfer but enhanced the E1PCa2 --> E2P conformational transition, whereas mutations Thr441 --> Ala, Glu442 --> Ala, Lys492 --> Leu, and Lys515 --> Ala inhibited the E1PCa2 --> E2P transition. Hydrolysis of the E2P phosphoenzyme intermediate was enhanced in Glu442 --> Ala, Lys492 --> Leu, Lys515 --> Ala, and Arg560 --> Glu. None of the mutations affected the low affinity activation by nucleotide of the phosphoenzyme-processing steps, indicating that modulatory nucleotide interacts differently from substrate nucleotide. Mutation Glu442 --> Ala greatly enhanced reaction of Lys515 with fluorescein isothiocyanate, indicating that the two residues form a salt link in the native protein.
- ItemOpen AccessInteraction of nucleotides and cations with the (Ca2+, Mg2+)-ATPase of sarcoplasmic reticulum as determined by fluorescence changes of bound 1-anilino-8-naphthalenesulfonate(1983) Arav, R; Aderem, A A; Berman, M CThe changes in fluorescence of 1-anilino-8-naphthalenesulfonate (ANS-) have been used to determine binding of ligands to the (Ca2+, Mg2+)-ATPase of sarcoplasmic reticulum vesicles, isolated from rabbit skeletal muscle. ANS- binds to sarcoplasmic reticulum membranes with an apparent Kd of 3.8 X 10(-5) M. The binding of ANS- had no effect on Ca2+ transport or Ca2+-dependent ATPase activity. EGTA, by binding endogenous Ca2+, increased the fluorescence intensity of bound ANS- by 10-12%. Subsequent addition of ATP, ADP, or Ca2+, in the presence or absence of Mg2+, reversed this change of fluorescence. The binding parameters, as determined by these decreases in fluorescence intensity, were as follows: for ATP, Kd = 1.0 X 10(-5) M, nH = 0.80; for ADP, Kd = 1.2 X 10(-5) M, nH = 0.89; and for Ca2+, Kd = 3.4 X 10(-7) M, nH = 1.8. The binding parameters for ITP and for the nonhydrolyzable analogue, adenyl-5'-yl-beta, gamma-methylene)diphosphate, were similar to those of ATP, but GDP, IDP, CDP, AMP, and cAMP had lower apparent affinities. Millimolar concentrations of pyrophosphate also decreased the fluorescence of bound ANS-, whereas orthophosphate caused a small (2-3%) increase in fluorescence in Ca2+-free media. Vanadate, in the presence of EGTA, decreased the fluorescence of bound ANS-with half-maximal effect at 4 X 10(-5) M. The changes of fluorescence intensity of bound ANS- appear to reflect conformational changes of the (Ca2+, Mg2+)-ATPase, consequent to ligand binding, with the low and high fluorescence intensity species corresponding to the E1 and E2 conformations, respectively. These appear to reflect similar conformational states of the (Ca2+, Mg2+)-ATPase to those reported by changes in intrinsic tryptophan fluorescence (DuPont, Y. (1976) Biochem, Biophys. Res. Commun. 71, 544-550).
- ItemOpen AccessStructural Studies of a Stabilized Phosphoenzyme Intermediate of Ca 2+ -ATPase(2005) Stokes, David L; Delavoie, Franck; Rice, William J; Champeil, Philippe; McIntosh, David B; Lacapère, Jean-JacquesCa(2+)-ATPase belongs to the family of P-type ATPases and maintains low concentrations of intracellular Ca(2+). Its reaction cycle consists of four main intermediates that alternate ion binding in the transmembrane domain with phosphorylation of an aspartate residue in a cytoplasmic domain. Previous work characterized an ultrastable phosphoenzyme produced first by labeling with fluorescein isothiocyanate, then by allowing this labeled enzyme to establish a maximal Ca(2+) gradient, and finally by removing Ca(2+) from the solution. This phosphoenzyme is characterized by very low fluorescence and has specific enzymatic properties suggesting the existence of a high energy phosphoryl bond. To study the structural properties of this phosphoenzyme, we used cryoelectron microscopy of two-dimensional crystals formed in the presence of decavanadate and determined the structure at 8-A resolution. To our surprise we found that at this resolution the low fluorescence phosphoenzyme had a structure similar to that of the native enzyme crystallized under equivalent conditions. We went on to use glutaraldehyde cross-linking and proteolysis for independent structural assessment and concluded that, like the unphosphorylated native enzyme, Ca(2+) and vanadate exert a strong influence over the global structure of this low fluorescence phosphoenzyme. Based on a structural model with fluorescein isothiocyanate bound at the ATP site, we suggest that the stability as well as the low fluorescence of this phosphoenzyme is due to a fluorescein-mediated cross-link between two cytoplasmic domains that prevents hydrolysis of the aspartyl phosphate. Finally, we consider the alternative possibility that phosphate transfer to fluorescein itself could explain the properties of this low fluorescence species.