Browsing by Subject "Respiratory infections"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- ItemOpen Access50 years of Emmonsia disease in humans: the dramatic emergence of a cluster of novel fungal pathogens(Public Library of Science, 2015) Schwartz, Ilan S; Kenyon, Chris; Feng, Peiying; Govender, Nelesh P; Dukik, Karolina; Sigler, Lynne; Jiang, Yanping; Stielow, J Benjamin; Muñoz, José F; Cuomo, Christina A; Botha, Alfred; Stchigel, Alberto M; De Hoog, G SybrenNew species of Emmonsia-like fungi, with phylogenetic and clinical similarities to Blastomyces and Histoplasma, have emerged as causes of systemic human mycoses worldwide. They differ from classical Emmonsia species by producing a thermally-dependent, yeast-like phase rather than adiaspores, and by causing disseminated infections, predominantly in immunocompromised patients and often with high case-fatality rates. Such differences will be important for clinicians to consider in diagnosis and patient management, and for microbiologists who may encounter these fungi with increasing frequency.
- ItemOpen AccessGeneration of genic diversity among Streptococcus pneumoniae strains via horizontal gene transfer during a chronic polyclonal pediatric infection(Public Library of Science, 2010) Hiller, N Luisa; Ahmed, Azad; Powell, Evan; Martin, Darren P; Eutsey, Rory; Earl, Josh; Janto, Benjamin; Boissy, Robert J; Hogg, Justin; Barbadora, KarenAlthough there is tremendous interest in understanding the evolutionary roles of horizontal gene transfer (HGT) processes that occur during chronic polyclonal infections, to date there have been few studies that directly address this topic. We have characterized multiple HGT events that most likely occurred during polyclonal infection among nasopharyngeal strains of Streptococcus pneumoniae recovered from a child suffering from chronic upper respiratory and middle-ear infections. Whole genome sequencing and comparative genomics were performed on six isolates collected during symptomatic episodes over a period of seven months. From these comparisons we determined that five of the isolates were genetically highly similar and likely represented a dominant lineage. We analyzed all genic and allelic differences among all six isolates and found that all differences tended to occur within contiguous genomic blocks, suggestive of strain evolution by homologous recombination. From these analyses we identified three strains (two of which were recovered on two different occasions) that appear to have been derived sequentially, one from the next, each by multiple recombination events. We also identified a fourth strain that contains many of the genomic segments that differentiate the three highly related strains from one another, and have hypothesized that this fourth strain may have served as a donor multiple times in the evolution of the dominant strain line. The variations among the parent, daughter, and grand-daughter recombinant strains collectively cover greater than seven percent of the genome and are grouped into 23 chromosomal clusters. While capturing in vivo HGT, these data support the distributed genome hypothesis and suggest that a single competence event in pneumococci can result in the replacement of DNA at multiple non-adjacent loci.
- ItemOpen AccessIndoor social networks in a South African township: potential contribution of location to tuberculosis transmission(Public Library of Science, 2012) Wood, Robin; Racow, Kimberly; Bekker, Linda-Gail; Morrow, Carl; Middelkoop, Keren; Mark, Daniella; Lawn, Stephen DBACKGROUND: We hypothesized that in South Africa, with a generalized tuberculosis (TB) epidemic, TB infection is predominantly acquired indoors and transmission potential is determined by the number and duration of social contacts made in locations that are conducive to TB transmission. We therefore quantified time spent and contacts met in indoor locations and public transport by residents of a South African township with a very high TB burden. METHODS: A diary-based community social mixing survey was performed in 2010. Randomly selected participants (n = 571) prospectively recorded numbers of contacts and time spent in specified locations over 24-hour periods. To better characterize age-related social networks, participants were stratified into ten 5-year age strata and locations were classified into 11 types. RESULTS: Five location types (own-household, other-households, transport, crèche/school, and work) contributed 97.2% of total indoor time and 80.4% of total indoor contacts. Median time spent indoors was 19.1 hours/day (IQR:14.3-22.7), which was consistent across age strata. Median daily contacts increased from 16 (IQR:9-40) in 0-4 year-olds to 40 (IQR:18-60) in 15-19 year-olds and declined to 18 (IQR:10-41) in ≥45 year-olds. Mean daily own-household contacts was 8.8 (95%CI:8.2-9.4), which decreased with increasing age. Mean crèche/school contacts increased from 6.2/day (95%CI:2.7-9.7) in 0-4 year-olds to 28.1/day (95%CI:8.1-48.1) in 15-19 year-olds. Mean transport contacts increased from 4.9/day (95%CI:1.6-8.2) in 0-4 year-olds to 25.5/day (95%CI:12.1-38.9) in 25-29 year-olds. CONCLUSIONS: A limited number of location types contributed the majority of indoor social contacts in this community. Increasing numbers of social contacts occurred throughout childhood, adolescence, and young adulthood, predominantly in school and public transport. This rapid increase in non-home socialization parallels the increasing TB infection rates during childhood and young adulthood reported in this community. Further studies of the environmental conditions in schools and public transport, as potentially important locations for ongoing TB infection, are indicated.
- ItemOpen AccessPhylogenetic exploration of nosocomial transmission chains of 2009 influenza A/H1N1 among children admitted at Red Cross War Memorial Children's Hospital, Cape Town, South Africa in 2011(Public Library of Science, 2015) Valley-Omar, Ziyaad; Nindo, Fredrick; Mudau, Maanda; Hsiao, Marvin; Martin, Darren PatrickTraditional modes of investigating influenza nosocomial transmission have entailed a combination of confirmatory molecular diagnostic testing and epidemiological investigation. Common hospital-acquired infections like influenza require a discerning ability to distinguish between viral isolates to accurately identify patient transmission chains. We assessed whether influenza hemagglutinin sequence phylogenies can be used to enrich epidemiological data when investigating the extent of nosocomial transmission over a four-month period within a paediatric Hospital in Cape Town South Africa. Possible transmission chains/channels were initially determined through basic patient admission data combined with Maximum likelihood and time-scaled Bayesian phylogenetic analyses. These analyses suggested that most instances of potential hospital-acquired infections resulted from multiple introductions of Influenza A into the hospital, which included instances where virus hemagglutinin sequences were identical between different patients. Furthermore, a general inability to establish epidemiological transmission linkage of patients/viral isolates implied that identified isolates could have originated from asymptomatic hospital patients, visitors or hospital staff. In contrast, a traditional epidemiological investigation that used no viral phylogenetic analyses, based on patient co-admission into specific wards during a particular time-frame, suggested that multiple hospital acquired infection instances may have stemmed from a limited number of identifiable index viral isolates/patients. This traditional epidemiological analysis by itself could incorrectly suggest linkage between unrelated cases, underestimate the number of unique infections and may overlook the possible diffuse nature of hospital transmission, which was suggested by sequencing data to be caused by multiple unique introductions of influenza A isolates into individual hospital wards. We have demonstrated a functional role for viral sequence data in nosocomial transmission investigation through its ability to enrich traditional, non-molecular observational epidemiological investigation by teasing out possible transmission pathways and working toward more accurately enumerating the number of possible transmission events.
- ItemOpen AccessPneumocystis jirovecii pneumonia in tropical and low and middle income countries: a systematic review and meta-regression(Public Library of Science, 2013) Lowe, David M; Rangaka, Molebogeng X; Gordon, Fabiana; James, Chris D; Miller, Robert FObjective: Pneumocystis jirovecii pneumonia (PCP), the commonest opportunistic infection in HIV-infected patients in the developed world, is less commonly described in tropical and low and middle income countries (LMIC). We sought to investigate predictors of PCP in these settings. Design Systematic review and meta-regression. METHODS: Meta-regression of predictors of PCP diagnosis (33 studies). Qualitative and quantitative assessment of recorded CD4 counts, receipt of prophylaxis and antiretrovirals, sensitivity and specificity of clinical signs and symptoms for PCP, co-infection with other pathogens, and case fatality (117 studies). RESULTS: The most significant predictor of PCP was per capita Gross Domestic Product, which showed strong linear association with odds of PCP diagnosis (p<0.0001). This was not explained by study design or diagnostic quality. Geographical area, population age, study setting and year of study also contributed to risk of PCP. Co-infection was common (444 episodes/1425 PCP cases), frequently with virulent organisms. The predictive value of symptoms, signs or simple tests in LMIC settings for diagnosis of PCP was poor. Case fatality was >30%; treatment was largely appropriate. Prophylaxis appeared to reduce the risk for development of PCP, however 24% of children with PCP were receiving prophylaxis. CD4 counts at presentation with PCP were usually <200×10 3/ ml. CONCLUSIONS: There is a positive relationship between GDP and risk of PCP diagnosis. Although failure to diagnose infection in poorer countries may contribute to this, we also hypothesise that poverty exposes at-risk patients to a wide range of infections and that the relatively non-pathogenic P. jirovecii is therefore under-represented. As LMIC develop economically they eliminate the conditions underlying transmission of virulent infection: P. jirovecii , ubiquitous in all settings, then becomes a greater relative threat.
- ItemOpen AccessQuantification of shared air: a social and environmental determinant of airborne disease transmission(Public Library of Science, 2014) Wood, Robin; Morrow, Carl; Ginsberg, Samuel; Piccoli, Elizabeth; Kalil, Darryl; Sassi, Angelina; Walensky, Rochelle P; Andrews, Jason RBACKGROUND: Tuberculosis is endemic in Cape Town, South Africa where a majority of the population become tuberculosis infected before adulthood. While social contact patterns impacting tuberculosis and other respiratory disease spread have been studied, the environmental determinants driving airborne transmission have not been quantified. METHODS: Indoor carbon dioxide levels above outdoor levels reflect the balance of exhaled breath by room occupants and ventilation. We developed a portable monitor to continuously sample carbon dioxide levels, which were combined with social contact diary records to estimate daily rebreathed litres. A pilot study established the practicality of monitor use up to 48-hours. We then estimated the daily volumes of air rebreathed by adolescents living in a crowded township. RESULTS: One hundred eight daily records were obtained from 63 adolescents aged between 12- and 20-years. Forty-five lived in wooden shacks and 18 in brick-built homes with a median household of 4 members (range 2-9). Mean daily volume of rebreathed air was 120.6 (standard error: 8.0) litres/day, with location contributions from household (48%), school (44%), visited households (4%), transport (0.5%) and other locations (3.4%). Independent predictors of daily rebreathed volumes included household type (p = 0.002), number of household occupants (p = 0.021), number of sleeping space occupants (p = 0.022) and winter season (p<0.001). CONCLUSIONS: We demonstrated the practical measurement of carbon dioxide levels to which individuals are exposed in a sequence of non-steady state indoor environments. A novel metric of rebreathed air volume reflects social and environmental factors associated with airborne infection and can identify locations with high transmission potential.
- ItemOpen AccessReal-time investigation of tuberculosis transmission: developing the Respiratory Aerosol Sampling Chamber (RASC)(Public Library of Science, 2016) Wood, Robin; Morrow, Carl; III, Clifton E Barry; Bryden, Wayne A; Call, Charles J; Hickey, Anthony J; Rodes, Charles E; Scriba, Thomas J; Blackburn, Jonathan; Issarow, Chacha; Mulder, Nicola; Woodward, Jeremy; Moosa, Atica; Singh, Vinayak; Mizrahi, Valerie; Warner, Digby FKnowledge of the airborne nature of respiratory disease transmission owes much to the pioneering experiments of Wells and Riley over half a century ago. However, the mechanical, physiological, and immunopathological processes which drive the production of infectious aerosols by a diseased host remain poorly understood. Similarly, very little is known about the specific physiological, metabolic and morphological adaptations which enable pathogens such as Mycobacterium tuberculosis ( Mtb ) to exit the infected host, survive exposure to the external environment during airborne carriage, and adopt a form that is able to enter the respiratory tract of a new host, avoiding innate immune and physical defenses to establish a nascent infection. As a first step towards addressing these fundamental knowledge gaps which are central to any efforts to interrupt disease transmission, we developed and characterized a small personal clean room comprising an array of sampling devices which enable isolation and representative sampling of airborne particles and organic matter from tuberculosis (TB) patients. The complete unit, termed the Respiratory Aerosol Sampling Chamber (RASC), is instrumented to provide real-time information about the particulate output of a single patient, and to capture samples via a suite of particulate impingers, impactors and filters. Applying the RASC in a clinical setting, we demonstrate that a combination of molecular and microbiological assays, as well as imaging by fluorescence and scanning electron microscopy, can be applied to investigate the identity, viability, and morphology of isolated aerosolized particles. Importantly, from a preliminary panel of active TB patients, we observed the real-time production of large numbers of airborne particles including Mtb , as confirmed by microbiological culture and polymerase chain reaction (PCR) genotyping. Moreover, direct imaging of captured samples revealed the presence of multiple rod-like Mtb organisms whose physical dimensions suggested the capacity for travel deep into the alveolar spaces of the human lung.