• English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
  • Communities & Collections
  • Browse OpenUCT
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
  1. Home
  2. Browse by Subject

Browsing by Subject "Recombinant proteins"

Now showing 1 - 7 of 7
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Open Access
    Avoidance of Protein Fold Disruption in Natural Virus Recombinants
    (Public Library of Science, 2007) Lefeuvre, Pierre; Lett, Jean-Michel; Reynaud, Bernard; Martin, Darren P
    Author Summary The exchange of genetic material between different virus species, called inter-species recombination, has the potential to generate, within a single genome replication cycle, an almost unimaginable number of genetically distinct virus strains, including many that might cause deadly new human, animal, or plant diseases. Many fear that inter-species recombination could provide viruses with quick access to evolutionary innovations such as broader host ranges, altered tissue tropisms, or increased severities. However, mounting evidence suggests that recombination is not an unconstrained process and that most inter-species recombinants that occur in nature are probably defective. It is suspected that networks of coevolved interactions between different parts of virus genomes and their encoded proteins must be kept intact for newly formed inter-species recombinants to have any chance of out-competing their parents. One category of coevolved interaction is that between contacting amino acids within the 3-D structures of folded proteins. Here we examine the distributions of recombination events across the genomes of a group of rampantly recombining plant viruses and find very good evidence that this class of interaction tends to be preserved amongst recombinant sequences sampled from nature. This indicates that selection against misfolded proteins strongly influences the survival of natural recombinants.
  • Loading...
    Thumbnail Image
    Item
    Open Access
    Complex recombination patterns arising during geminivirus coinfections preserve and demarcate biologically important intra-genome interaction networks
    (Public Library of Science, 2011) Martin, Darren P; Lefeuvre, Pierre; Varsani, Arvind; Hoareau, Murielle; Semegni, Jean-Yves; Dijoux, Betty; Vincent, Claire; Reynaud, Bernard; Lett, Jean-Michel
    Author Summary Genetic recombination between viruses is a form of parasexual reproduction during which two parental viruses each contribute genetic information to an offspring, or recombinant, virus. Unlike with sexual reproduction, however, recombination in viruses can even involve the transfer of sequences between the members of distantly related species. When parental genomes are very distantly related, it is anticipated that recombination between them runs the risk of producing defective offspring. The reason for this is that the interactions between different parts of genomes and the proteins they encode (such as between different viral proteins or between viral proteins and the virus genomic DNA or RNA) often depend on particular co-evolved binding sites that recognize one another. When in a recombinant genome the partners in a binding site pair are each inherited from different parents there is a possibility that they will not interact with one another properly. Here we examine recombinant genomes arising during experimental mixed infections of two distantly related viruses to detect evidence that intra-genome interaction networks are broadly preserved in these genomes. We show this preservation is so strict that patterns of recombination in these viruses can even be used to identify the interacting regions within their genomes.
  • Loading...
    Thumbnail Image
    Item
    Open Access
    Impairment of IFN-gamma response to synthetic peptides of mycobacterium tuberculosis in a 7-day whole blood assay
    (Public Library of Science, 2013) Gideon, Hannah Priyadarshini; Hamilton, Melissa Shea; Wood, Kathryn; Pepper, Dominique; Oni, Tolu; Seldon, Ronnett; Banwell, Claire; Langford, Paul R; Wilkinson, Robert J; Wilkinson, Katalin A
    Studies on Mycobacterium tuberculosis (MTB) antigens are of interest in order to improve vaccine efficacy and to define biomarkers for diagnosis and treatment monitoring. The methodologies used for these investigations differ greatly between laboratories and discordant results are common. The IFN-gamma response to two well characterized MTB antigens ESAT-6 and CFP-10, in the form of recombinant proteins and synthetic peptides, was evaluated in HIV-1 uninfected persons in both long-term (7 day) and 24 hour, commercially available QuantiFERON TB Gold in Tube (QFT-GIT), whole blood assays. Our findings showed differences in the IFN-gamma response between 24 hour and 7 day cultures, with recombinant proteins inducing a significantly higher response than the peptide pools in 7 day whole blood assays. The activity of peptides and recombinant proteins did not differ in 24 hour whole blood or peripheral blood mononuclear cell (PBMC) based assays, nor in the ELISpot assay. Further analysis by SELDI-TOF mass spectrometry showed that the peptides are degraded over the course of 7 days of incubation in whole blood whilst the recombinant proteins remain intact. This study therefore demonstrates that screening antigenic candidates as synthetic peptides in long-term whole blood assays may underestimate immunogenicity.
  • Loading...
    Thumbnail Image
    Item
    Open Access
    Molecular mechanisms of recombination restriction in the envelope gene of the human immunodeficiency virus
    (Public Library of Science, 2009) Simon-Loriere, Etienne; Galetto, Roman; Hamoudi, Meriem; Archer, John; Lefeuvre, Pierre; Martin, Darren P; Robertson, David L; Negroni, Matteo
    Author Summary Recombination allows mixing portions of genomes of different origins, generating chimeric genes and genomes. With respect to the random generation of new mutations, it can lead to the simultaneous insertion of several substitutions, introducing more drastic changes in the genome. Furthermore, recombination is expected to yield a higher proportion of functional products since it combines variants that already exist in the population and that are therefore compatible with the survival of the organism. However, when recombination involves genetically distant strains, it can be constrained by the necessity to retain the functionality of the resulting products. In pathogens, which are subjected to strong selective pressures, recombination is particularly important, and several viruses, such as the human immunodeficiency virus (HIV), readily recombine. Here, we demonstrate the existence of preferential regions for recombination in the HIV-1 envelope gene when crossing sequences representative of strains observed to recombine in vivo. Furthermore, some recombinants give a decreased proportion of functional products. When considering these factors, one can retrace the history of most natural HIV recombinants. Recombination in HIV appears not so unpredictable, therefore, and the existence of recombinants that frequently generate nonfunctional products highlights previously unappreciated limits of the genetic flexibility of HIV.
  • Loading...
    Thumbnail Image
    Item
    Open Access
    Patterns of recombination in HIV-1M are influenced by selection disfavouring the survival of recombinants with disrupted genomic RNA and protein structures
    (Public Library of Science, 2014) Golden, Michael; Muhire, Brejnev M; Semegni, Yves; Martin, Darren P
    Genetic recombination is a major contributor to the ongoing diversification of HIV. It is clearly apparent that across the HIV-genome there are defined recombination hot and cold spots which tend to co-localise both with genomic secondary structures and with either inter-gene boundaries or intra-gene domain boundaries. There is also good evidence that most recombination breakpoints that are detectable within the genes of natural HIV recombinants are likely to be minimally disruptive of intra-protein amino acid contacts and that these breakpoints should therefore have little impact on protein folding. Here we further investigate the impact on patterns of genetic recombination in HIV of selection favouring the maintenance of functional RNA and protein structures. We confirm that chimaeric Gag p24, reverse transcriptase, integrase, gp120 and Nef proteins that are expressed by natural HIV-1 recombinants have significantly lower degrees of predicted folding disruption than randomly generated recombinants. Similarly, we use a novel single-stranded RNA folding disruption test to show that there is significant, albeit weak, evidence that natural HIV recombinants tend to have genomic secondary structures that more closely resemble parental structures than do randomly generated recombinants. These results are consistent with the hypothesis that natural selection has acted both in the short term to purge recombinants with disrupted RNA and protein folds, and in the longer term to modify the genome architecture of HIV to ensure that recombination prone sites correspond with those where recombination will be minimally deleterious.
  • Loading...
    Thumbnail Image
    Item
    Open Access
    Selection and application of ssDNA aptamers to detect active TB from sputum samples
    (Public Library of Science, 2012) Rotherham, Lia S; Maserumule, Charlotte; Dheda, Keertan; Theron, Jacques; Khati, Makobetsa
    BACKGROUND: Despite the enormous global burden of tuberculosis (TB), conventional approaches to diagnosis continue to rely on tests that have major drawbacks. The improvement of TB diagnostics relies, not only on good biomarkers, but also upon accurate detection methodologies. The 10-kDa culture filtrate protein (CFP-10) and the 6-kDa early secreted antigen target (ESAT-6) are potent T-cell antigens that are recognised by over 70% of TB patients. Aptamers, a novel sensitive and specific class of detection molecules, has hitherto, not been raised to these relatively TB-specific antigens. METHODS: DNA aptamers that bind to the CFP-10.ESAT-6 heterodimer were isolated. To assess their affinity and specificity to the heterodimer, aptamers were screened using an enzyme-linked oligonucleotide assay (ELONA). One suitable aptamer was evaluated by ELONA using sputum samples obtained from 20 TB patients and 48 control patients (those with latent TB infection, symptomatic non TB patients, and healthy laboratory volunteers). Culture positivity for Mycobacterium tuberculosis (Mtb) served as the reference standard. Accuracy and cut-points were evaluated using ROC curve analysis. RESULTS: Twenty-four out of the 66 aptamers that were isolated bound significantly (p<0.05) to the CFP-10.ESAT-6 heterodimer and six were further evaluated. Their dissociation constant (K D ) values were in the nanomolar range. One aptamer, designated CSIR 2.11, was evaluated using sputum samples. CSIR 2.11 had sensitivity and specificity of 100% and 68.75% using Youden's index and 35% and 95%, respectively, using a rule-in cut-point. CONCLUSION: This preliminary proof-of-concept study suggests that a diagnosis of active TB using anti-CFP-10.ESAT-6 aptamers applied to human sputum samples is feasible.
  • Loading...
    Thumbnail Image
    Item
    Open Access
    The use of directed evolution to create a stable and immunogenic recombinant BCG expressing a modified HIV-1 Gag antigen
    (Public Library of Science, 2014) Chapman, Rosamund; Bourn, William R; Shephard, Enid; Stutz, Helen; Douglass, Nicola; Mgwebi, Thandi; Meyers, Ann; Chin'ombe, Nyasha; Williamson, Anna-Lise
    Numerous features make Mycobacterium bovis BCG an attractive vaccine vector for HIV. It has a good safety profile, it elicits long-lasting cellular immune responses and in addition manufacturing costs are affordable. Despite these advantages it is often difficult to express viral antigens in BCG, which results in genetic instability and low immunogenicity. The aim of this study was to generate stable recombinant BCG (rBCG) that express high levels of HIV antigens, by modification of the HIV genes. A directed evolution process was applied to recombinant mycobacteria that expressed HIV-1 Gag fused to the green fluorescent protein (GFP). Higher growth rates and increased GFP expression were selected for. Through this process a modified Gag antigen was selected. Recombinant BCG that expressed the modified Gag (BCG[pWB106] and BCG[pWB206]) were more stable, produced higher levels of antigen and grew faster than those that expressed the unmodified Gag (BCG[pWB105]). The recombinant BCG that expressed the modified HIV-1 Gag induced 2 to 3 fold higher levels of Gag-specific CD4 T cells than those expressing the unmodified Gag (BCG[pWB105]). Mice primed with 10 7 CFU BCG[pWB206] and then boosted with MVA-Gag developed Gag-specific CD8 T cells with a frequency of 1343±17 SFU/10 6 splenocytes, 16 fold greater than the response induced with MVA-Gag alone. Levels of Gag-specific CD4 T cells were approximately 5 fold higher in mice primed with BCG[pWB206] and boosted with MVA-Gag than in those receiving the MVA-Gag boost alone. In addition mice vaccinated with BCG[pWB206] were protected from a surrogate vaccinia virus challenge.
UCT Libraries logo

Contact us

Jill Claassen

Manager: Scholarly Communication & Publishing

Email: openuct@uct.ac.za

+27 (0)21 650 1263

  • Open Access @ UCT

    • OpenUCT LibGuide
    • Open Access Policy
    • Open Scholarship at UCT
    • OpenUCT FAQs
  • UCT Publishing Platforms

    • UCT Open Access Journals
    • UCT Open Access Monographs
    • UCT Press Open Access Books
    • Zivahub - Open Data UCT
  • Site Usage

    • Cookie settings
    • Privacy policy
    • End User Agreement
    • Send Feedback

DSpace software copyright © 2002-2025 LYRASIS