Browsing by Subject "Receptors, LHRH"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- ItemOpen AccessAsn 102 of the Gonadotropin-releasing Hormone Receptor Is a Critical Determinant of Potency for Agonists Containing C-terminal Glycinamide(1996) Davidson, James S; McArdle, Craig A; Davies, Peter; Elario, Ricardo; Flanagan, Colleen A; Millar, Robert PWe demonstrate a critical role for Asn102 of the human gonadotropin-releasing hormone (GnRH) receptor in the binding of GnRH. Mutation of Asn102, located at the top of the second transmembrane helix, to Ala resulted in a 225-fold loss of potency for GnRH. Eight GnRH analogs, all containing glycinamide C termini like GnRH, showed similar losses of potency between 95- and 750-fold for the [Ala102]GnRHR, compared with wild-type receptor. In contrast, four GnRH analogs that had ethylamide in place of the C-terminal glycinamide residue, showed much smaller decreases in potency between 2.4- and 11-fold. In comparisons of three agonist pairs, differing only at the C terminus, glycinamide derivatives showed an 11-20-fold greater loss of potency for the mutant receptor than their respective ethylamide derivatives. Thus Asn102 is a critical determinant of potency specifically for ligands with C-terminal glycinamide, while ligands with C-terminal ethylamide are less dependent on Asn102. These findings indicate a role for Asn102 in the docking of the glycinamide C terminus and are consistent with hydrogen bonding of the Asn102 side chain with the C-terminal amide moiety. Taken with previous data, they suggest a region of the GnRH receptor formed by the top of helices 2 and 7 as a binding pocket for the C-terminal part of the ligand.
- ItemOpen AccessAutocrine regulation of gonadotropin-releasing hormone in immortalized hypothalamic GT1-7 neurons(1994) Pithey, Anne Louise; Millar, Robert P; Dutlow, CliveThe existence of an ultrashort feedback mechanism regulating GnRH secretion has been supported from in vivo and in vitro studies. However, the complex synaptic connections of GnRH neurons with other neural elements made it difficult to determine whether the regulation was mediated by direct actions on the GnRH neurons or through actions on other interneurons. The recent development of the GnRH-secreting neuronal cell line, GT1, provided a model system for the study of neural regulation of a pure population of GnRH neurons. The present studies utilized GT1 -7 cells to investigate whether GnRH (at the level of the nerve terminal) influences the control of its own release. Preliminary studies determined the presence of GnRH mRNA in GT1-7 cells and established a cell culture system for the analysis of secretagogue-induced GnRH release. In this system GnRH release was shown to be spontaneous and was enhanced by the addition of K⁺, L-GLU, forskolin and PMA. Furthermore, K⁺- and forskolin-induced GnRH release was dependent on extracellular Ca²⁺. For the analysis of an ultrashort feedback mechanism, GT1-7 cells were cultured in 6-well plates to near confluence and then incubated in serum-free medium in the presence (1 nM- 1 μM) or absence of GnRH antagonist, Ant 27. Basal, K⁺-and forskolin-induced secretion of GnRH was monitored with antiserum 1076 which does not cross-react with Ant 27 at> 1 μM. Ant 27 treatment increased basal, K⁺- and forskolin-stimulated GnRH release in a dose-dependent manner. Total content was unaffected by 18 h treatment of GT1-7 cells with Ant 27. This suggests that the effects of Ant 27 are at the level of release and not biosynthesis. The presence of GnRH binding sites in the cells was demonstrated with ¹²⁵I-GnRH analog. These findings support the concept that GnRH, acting via autoreceptors, negatively controls its own release.
- ItemOpen AccessDesensitization of Gonadotropin-releasing Hormone Action in αT3-1 Cells Due to Uncoupling of Inositol 1,4,5-Trisphosphate Generation and Ca 2+ Mobilization(1996) McArdle, Craig A; Willars, Gary B; Fowkes, Robert C; Nahorski, Stefan R; Davidson, James S; Forrest-Owen, WynGonadotropin-releasing hormone (GnRH) acts via a G-protein coupled receptor on gonadotropes to increase cytosolic Ca2+ and stimulate gonadotropin secretion. Sustained exposure causes desensitization of these effects, but the GnRH receptor has no C-terminal tail and does not undergo rapid (<5 min) desensitization. Nevertheless, pretreatment of alphaT3-1 cells with GnRH reduced the spike Ca2+ response to GnRH and decreased the GnRH effect on inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) by 30-50%. Ca2+-free medium with or without thapsigargin also decreased GnRH-stimulated Ins(1,4,5)P3 generation, implying that attenuation of the Ca2+ response underlies the Ins(1,4,5)P3 reduction rather than vice versa. Intracellular Ca2+ pool depletion cannot explain desensitization of the Ca2+ response because pool depletion and repletion were faster (half-times, <1 min) than the onset of and recovery from desensitization (half-times 10-20 min and 4-6 h). Moreover, 1-h GnRH pre-treatment attenuated the spike Ca2+ response to GnRH but not that to ionomycin, and brief GnRH exposure in Ca2+-free medium reduced the response to ionomycin more effectively in controls than in desensitized cells. GnRH pretreatment also attenuated the Ca2+ response to PACAP38. This novel form of desensitization does not reflect uncoupling of GnRH receptors from their immediate effector system but rather a reduced efficiency of mobilization by Ins(1,4,5)P3 of Ca2+ from an intact intracellular pool.
- ItemOpen AccessDifferential Internalization of Mammalian and Non-mammalian Gonadotropin-releasing Hormone Receptors: UNCOUPLING OF DYNAMIN-DEPENDENT INTERNALIZATION FROM MITOGEN-ACTIVATED PROTEIN KINASE SIGNALING(2001) Hislop, James N; Everest, Helen M; Flynn, Andrea; Harding, Tom; Uney, James B; Troskie, Brigitte E; Millar, Robert P; McArdle, Craig ADesensitization and internalization of G-protein-coupled receptors can reflect receptor phosphorylation-dependent binding of beta-arrestin, which prevents G-protein activation and targets receptors for internalization via clathrin-coated vesicles. These can be pinched off by a dynamin collar, and proteins controlling receptor internalization can also mediate mitogen-activated protein kinase signaling. Gonadotropin-releasing hormone (GnRH) stimulates internalization of its receptors via clathrin-coated vesicles. Mammalian GnRH receptors (GnRH-Rs) are unique in that they lack C-terminal tails and do not rapidly desensitize, whereas non-mammalian GnRH-R have C-terminal tails and, where investigated, do rapidly desensitize and internalize. Using recombinant adenovirus expressing human and Xenopus GnRH-Rs we have explored the relationship between receptor internalization and mitogen-activated protein kinase signaling in HeLa cells with regulated tetracycline-controlled expression of wild-type or a dominant negative mutant (K44A) of dynamin. These receptors were phospholipase C-coupled and had appropriate ligand affinity and specificity. K44A dynamin expression did not alter human GnRH-R internalization but dramatically reduced internalization of Xenopus GnRH-R (and epidermal growth factor (EGF) receptor). Blockade of clathrin-mediated internalization (sucrose) abolished internalization of all three receptors. Both GnRH-Rs also mediated phosphorylation of ERK 2 and for both receptors, this was inhibited by K44A dynamin. The same was true for EGF- and protein kinase C-mediated ERK 2 phosphorylation. ERK 2 phosphorylation was also inhibited by a protein kinase C inhibitor but not affected by an EGF receptor tyrosine kinase inhibitor. We conclude that a) desensitizing and non-desensitizing GnRH-Rs are targeted for clathrin-coated vesicle-mediated internalization by functionally distinct mechanisms, b) GnRH-R signaling to ERK 2 is dynamin-dependent and c) this does not reflect a dependence on dynamin-dependent GnRH-R internalization.
- ItemOpen AccessFunctional microdomains in G-protein-coupled receptors: the conserved arginine-cage motif in the gonadotropin-releasing hormone receptor(1998) Ballesteros, Juan; Kitanovic, Smiljka; Guarnieri, Frank; Davies, Peter; Fromme, Bernard J; Konvicka, Karel; Chi, Ling; Millar, Robert P; Davidson, James S; Weinstein, Harel; Sealfon, Stuart CAn Arg present in the third transmembrane domain of all rhodopsin-like G-protein-coupled receptors is required for efficient signal transduction. Mutation of this Arg in the gonadotropin-releasing hormone receptor to Gln, His, or Lys abolished or severely impaired agonist-stimulated inositol phosphate generation, consistent with Arg having a role in receptor activation. To investigate the contribution of the surrounding structural domain in the actions of the conserved Arg, an integrated microdomain modeling and mutagenesis approach has been utilized. Two conserved residues that constrain the Arg side chain to a limited number of conformations have been identified. In the inactive wild-type receptor, the Arg side chain is proposed to form an ionic interaction with Asp3.49(138). Experimental results for the Asp3. 49(138) --> Asn mutant receptor show a modestly enhanced receptor efficiency, consistent with the hypothesis that weakening the Asp3. 49(138)-Arg3.50(139) interaction by protonation of the Asp or by the mutation to Asn favors activation. With activation, the Asp3. 49(138)-Arg3.50(139) ionic bond would break, and the unrestrained Arg would be prevented from orienting itself toward the water phase by a steric clash with Ile3.54(143). The mutation Ile3.54(143) --> Ala, which eliminates this clash in simulations, causes a marked reduction in measured receptor signaling efficiency, implying that solvation of Arg3.50(139) prevents it from functioning in the activation of the receptor. These data are consistent with residues Asp3.49(138) and Ile3.54(143) forming a structural motif, which helps position Arg in its appropriate inactive and active receptor conformations.
- ItemOpen AccessStructural Determinants for Ligand-Receptor Conformational Selection in a Peptide G Protein-coupled Receptor(2007) Lu, Zhi-Liang; Coetsee, Marla; White, Colin D; Millar, Robert PG protein coupled receptors (GPCRs) modulate the majority of physiological processes through specific intermolecular interactions with structurally diverse ligands and activation of differential intracellular signaling. A key issue yet to be resolved is how GPCRs developed selectivity and diversity of ligand binding and intracellular signaling during evolution. We have explored the structural basis of selectivity of naturally occurring gonadotropin-releasing hormones (GnRHs) from different species in the single functional human GnRH receptor. We found that the highly variable amino acids in position 8 of the naturally occurring isoforms of GnRH play a discriminating role in selecting receptor conformational states. The human GnRH receptor has a higher affinity for the cognate GnRH I but a lower affinity for GnRH II and GnRHs from other species possessing substitutions for Arg(8). The latter were partial agonists in the human GnRH receptor. Mutation of Asn(7.45) in transmembrane domain (TM) 7 had no effect on GnRH I affinity but specifically increased affinity for other GnRHs and converted them to full agonists. Using molecular modeling and site-directed mutagenesis, we demonstrated that the highly conserved Asn(7.45) makes intramolecular interactions with a highly conserved Cys(6.47) in TM 6, suggesting that disruption of this intramolecular interaction induces a receptor conformational change which allosterically alters ligand specific binding sites and changes ligand selectivity and signaling efficacy. These results reveal GnRH ligand and receptor structural elements for conformational selection, and support co-evolution of GnRH ligand and receptor conformations.
- ItemOpen AccessThe Functional Microdomain in Transmembrane Helices 2 and 7 Regulates Expression, Activation, and Coupling Pathways of the Gonadotropin-releasing Hormone Receptor(1999) Flanagan, Colleen A; Zhou, Wei; Chi, Ling; Yuen, Tony; Rodic, Vladimir; Robertson, Derek; Johnson, Melanie; Holland, Pamela; Millar, Robert P; Weinstein, Harel; Mitchell, Rory; Sealfon, Stuart CStructural microdomains of G protein-coupled receptors (GPCRs) consist of spatially related side chains that mediate discrete functions. The conserved helix 2/helix 7 microdomain was identified because the gonadotropin-releasing hormone (GnRH) receptor appears to have interchanged the Asp(2.50) and Asn(7.49) residues which are conserved in transmembrane helices 2 and 7 of rhodopsin-like GPCRs. We now demonstrate that different side chains of this microdomain contribute specifically to receptor expression, heterotrimeric G protein-, and small G protein-mediated signaling. An Asn residue is required in position 2.50(87) for expression of the GnRH receptor at the cell surface, most likely through an interaction with the conserved Asn(1.50(53)) residue, which we also find is required for receptor expression. Most GPCRs require an Asp side chain at either the helix 2 or helix 7 locus of the microdomain for coupling to heterotrimeric G proteins, but the GnRH receptor has transferred the requirement for an acidic residue from helix 2 to 7. However, the presence of Asp at the helix 7 locus precludes small G protein-dependent coupling to phospholipase D. These results implicate specific components of the helix 2/helix 7 microdomain in receptor expression and in determining the ability of the receptor to adopt distinct activated conformations that are optimal for interaction with heterotrimeric and small G proteins.