Browsing by Subject "Protein Binding"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- ItemOpen AccessAsn 102 of the Gonadotropin-releasing Hormone Receptor Is a Critical Determinant of Potency for Agonists Containing C-terminal Glycinamide(1996) Davidson, James S; McArdle, Craig A; Davies, Peter; Elario, Ricardo; Flanagan, Colleen A; Millar, Robert PWe demonstrate a critical role for Asn102 of the human gonadotropin-releasing hormone (GnRH) receptor in the binding of GnRH. Mutation of Asn102, located at the top of the second transmembrane helix, to Ala resulted in a 225-fold loss of potency for GnRH. Eight GnRH analogs, all containing glycinamide C termini like GnRH, showed similar losses of potency between 95- and 750-fold for the [Ala102]GnRHR, compared with wild-type receptor. In contrast, four GnRH analogs that had ethylamide in place of the C-terminal glycinamide residue, showed much smaller decreases in potency between 2.4- and 11-fold. In comparisons of three agonist pairs, differing only at the C terminus, glycinamide derivatives showed an 11-20-fold greater loss of potency for the mutant receptor than their respective ethylamide derivatives. Thus Asn102 is a critical determinant of potency specifically for ligands with C-terminal glycinamide, while ligands with C-terminal ethylamide are less dependent on Asn102. These findings indicate a role for Asn102 in the docking of the glycinamide C terminus and are consistent with hydrogen bonding of the Asn102 side chain with the C-terminal amide moiety. Taken with previous data, they suggest a region of the GnRH receptor formed by the top of helices 2 and 7 as a binding pocket for the C-terminal part of the ligand.
- ItemOpen AccessAsparagine 706 and Glutamate 183 at the Catalytic Site of Sarcoplasmic Reticulum Ca 2+ -ATPase Play Critical but Distinct Roles in E 2 States(2006) Clausen, Johannes D; McIntosh, David B; Woolley, David G; Anthonisen, Anne Nyholm; Vilsen, Bente; Andersen, Jens PeterMutants with alteration to Asn(706) of the highly conserved (701)TGDGVND(707) motif in domain P of sarcoplasmic reticulum Ca(2+)-ATPase were analyzed for changes in transport cycle kinetics and binding of the inhibitors vanadate, BeF, AlF, and MgF. The fluorides likely mimic the phosphoryl group/P(i) in the respective ground, transition, and product states of phosphoenzyme hydrolysis (Danko, S., Yamasaki, K., Daiho, T., and Suzuki, H. (2004) J. Biol. Chem. 279, 14991-14998). Binding of BeF, AlF, and MgF was also studied for mutant Glu(183) --> Ala, where the glutamate of the (181)TGES(184) motif in domain A is replaced. Mutations of Asn(706) and Glu(183) have in common that they dramatically impede the function of the enzyme in E2 states, but have little effect in E1. Contrary to the Glu(183) mutant, in which E2P slowly accumulates (Clausen, J. D., Vilsen, B., McIntosh, D. B., Einholm, A. P., and Andersen, J. P. (2004) Proc. Natl. Acad. Sci. U. S. A. 101, 2776-2781), E2P formation was not detectable with the Asn(706) mutants. Differential sensitivities of the mutants to inhibition by AlF, MgF, and BeF made it possible to distinguish different roles of Asn(706) and Glu(183). Hence, Asn(706) is less important than Glu(183) for gaining the transition state during E2P hydrolysis but plays critical roles in stabilization of E2P ground and E2.P(i) product states and in the major conformational changes associated with the Ca(2)E1P --> E2P and E2 --> Ca(2)E1 transitions, which seem to be facilitated by interaction of Asn(706) with domain A.
- ItemOpen AccessATPase and Multidrug Transport Activities of the Overexpressed Yeast ABC Protein Yor1p(1998) Decottignies, Anabelle; Grant, Althea M; Nichols, J Wylie; de Wet, Heidi; McIntosh, David B; Goffeau, AndréThe Saccharomyces cerevisiae genome encodes 15 full-size ATP binding cassette transporters (ABC), of which PDR5, SNQ2, and YOR1 are known to be regulated by the transcription factors Pdr1p and Pdr3p (pleiotropic drug resistance). We have identified two new ABC transporter-encoding genes, PDR10 and PDR15, which were up-regulated by the PDR1-3 mutation. These genes, as well as four other ABC transporter-encoding genes, were deleted in order to study the properties of Yor1p. The PDR1-3 gain-of-function mutant was then used to overproduce Yor1p up to 10% of the total plasma membrane proteins. Overexpressed Yor1p was photolabeled by [gamma-32P]2', 3'-O-(2,4,6-trinitrophenyl)-8-azido-ATP (K0.5 = 45 microM) and inhibited by ATP (KD = 0.3 mM) in plasma membranes. Solubilization and partial purification on sucrose gradient allowed to detect significant Yor1p ATP hydrolysis activity (approximately 100 nmol of Pi.min-1.mg-1). This activity was phospholipid-dependent and sensitive to low concentrations of vanadate (I50 = 0.3 microM) and oligomycin (I50 = 8.5 microg/ml). In vivo, we observed a correlation between the amount of Yor1p in the plasma membrane and the level of resistance to oligomycin. We also demonstrated that Yor1p drives an energy-dependent, proton uncoupler-insensitive, cellular extrusion of rhodamine B. Furthermore, cells lacking both Yor1p and Pdr5p (but not Snq2p) showed increased accumulation of the fluorescent derivative of 1-myristoyl-2-[6-(NBD)aminocaproyl]phosphatidylethanolamine. Despite their different topologies, both Yor1p and Pdr5p mediated the ATP-dependent translocation of similar drugs and phospholipids across the yeast cell membrane. Both ABC transporters exhibit ATP hydrolysis in vitro, but Pdr5p ATPase activity is about 15 times higher than that of Yor1p, which may indicate mechanistic or regulatory differences between the two enzymes.
- ItemOpen AccessImportance of Conserved N-domain Residues Thr 441 , Glu 442 , Lys 515 , Arg 560 , and Leu 562 of Sarcoplasmic Reticulum Ca 2+ -ATPase for MgATP Binding and Subsequent Catalytic Steps: PLASTICITY OF THE NUCLEOTIDE-BINDING SITE(2003) Clausen, Johannes D; McIntosh, David B; Vilsen, Bente; Woolley, David G; Andersen, Jens PeterNine single mutations were introduced to amino acid residues Thr441, Glu442, Lys515, Arg560, Cys561, and Leu562 located in the nucleotide-binding domain of sarcoplasmic reticulum Ca2+-ATPase, and the functional consequences were studied in a direct nucleotide binding assay, as well as by steady-state and transient kinetic measurements of the overall and partial reactions of the transport cycle. Some partial reaction steps were also examined in mutants with alterations to Phe487, Arg489, and Lys492. The results implicate all these residues, except Cys561, in high affinity nucleotide binding at the substrate site. Mutations Thr441 --> Ala, Glu442 --> Ala, and Leu562 --> Phe were more detrimental to MgATP binding than to ATP binding, thus pointing to a role for these residues in the binding of Mg2+ or to a difference between the interactions with MgATP and ATP. Subsequent catalytic steps were also selectively affected by the mutations, showing the involvement of the nucleotide-binding domain in these reactions. Mutation of Arg560 inhibited phosphoryl transfer but enhanced the E1PCa2 --> E2P conformational transition, whereas mutations Thr441 --> Ala, Glu442 --> Ala, Lys492 --> Leu, and Lys515 --> Ala inhibited the E1PCa2 --> E2P transition. Hydrolysis of the E2P phosphoenzyme intermediate was enhanced in Glu442 --> Ala, Lys492 --> Leu, Lys515 --> Ala, and Arg560 --> Glu. None of the mutations affected the low affinity activation by nucleotide of the phosphoenzyme-processing steps, indicating that modulatory nucleotide interacts differently from substrate nucleotide. Mutation Glu442 --> Ala greatly enhanced reaction of Lys515 with fluorescein isothiocyanate, indicating that the two residues form a salt link in the native protein.
- ItemOpen AccessPoxvirus Protein N1L Targets the I-κB Kinase Complex, Inhibits Signaling to NF-κB by the Tumor Necrosis Factor Superfamily of Receptors, and Inhibits NF-κB and IRF3 Signaling by Toll-like Receptors(2004) DiPerna, Gary; Stack, Julianne; Bowie, Andrew G; Boyd, Annemarie; Kotwal, Girish; Zhang, Zhouning; Arvikar, Sheila; Latz, Eicke; Fitzgerald, Katherine A; Marshall, William LPoxviruses encode proteins that suppress host immune responses, including secreted decoy receptors for pro-inflammatory cytokines such as interleukin-1 (IL-1) and the vaccinia virus proteins A46R and A52R that inhibit intracellular signaling by members of the IL-1 receptor (IL-1R) and Toll-like receptor (TLR) family. In vivo, the TLRs mediate the innate immune response by serving as pathogen recognition receptors, whose oligomerized intracellular Toll/IL-1 receptor (TIR) domains can initiate innate immune signaling. A family of TIR domain-containing adapter molecules transduces signals from engaged receptors that ultimately activate NF-kappaB and/or interferon regulatory factor 3 (IRF3) to induce pro-inflammatory cytokines. Data base searches detected a significant similarity between the N1L protein of vaccinia virus and A52R, a poxvirus inhibitor of TIR signaling. Compared with other poxvirus virulence factors, the poxvirus N1L protein strongly affects virulence in vivo; however, the precise target of N1L was previously unknown. Here we show that N1L suppresses NF-kappaB activation following engagement of Toll/IL-1 receptors, tumor necrosis factor receptors, and lymphotoxin receptors. N1L inhibited receptor-, adapter-, TRAF-, and IKK-alpha and IKK-beta-dependent signaling to NF-kappaB. N1L associated with several components of the multisubunit I-kappaB kinase complex, most strongly associating with the kinase, TANK-binding kinase 1 (TBK1). Together these findings are consistent with the hypothesis that N1L disrupts signaling to NF-kappaB by Toll/IL-1Rs and TNF superfamily receptors by targeting the IKK complex for inhibition. Furthermore, N1L inhibited IRF3 signaling, which is also regulated by TBK1. These studies define a role for N1L as an immunomodulator of innate immunity by targeting components of NF-kappaB and IRF3 signaling pathways.
- ItemOpen AccessThe Functional Microdomain in Transmembrane Helices 2 and 7 Regulates Expression, Activation, and Coupling Pathways of the Gonadotropin-releasing Hormone Receptor(1999) Flanagan, Colleen A; Zhou, Wei; Chi, Ling; Yuen, Tony; Rodic, Vladimir; Robertson, Derek; Johnson, Melanie; Holland, Pamela; Millar, Robert P; Weinstein, Harel; Mitchell, Rory; Sealfon, Stuart CStructural microdomains of G protein-coupled receptors (GPCRs) consist of spatially related side chains that mediate discrete functions. The conserved helix 2/helix 7 microdomain was identified because the gonadotropin-releasing hormone (GnRH) receptor appears to have interchanged the Asp(2.50) and Asn(7.49) residues which are conserved in transmembrane helices 2 and 7 of rhodopsin-like GPCRs. We now demonstrate that different side chains of this microdomain contribute specifically to receptor expression, heterotrimeric G protein-, and small G protein-mediated signaling. An Asn residue is required in position 2.50(87) for expression of the GnRH receptor at the cell surface, most likely through an interaction with the conserved Asn(1.50(53)) residue, which we also find is required for receptor expression. Most GPCRs require an Asp side chain at either the helix 2 or helix 7 locus of the microdomain for coupling to heterotrimeric G proteins, but the GnRH receptor has transferred the requirement for an acidic residue from helix 2 to 7. However, the presence of Asp at the helix 7 locus precludes small G protein-dependent coupling to phospholipase D. These results implicate specific components of the helix 2/helix 7 microdomain in receptor expression and in determining the ability of the receptor to adopt distinct activated conformations that are optimal for interaction with heterotrimeric and small G proteins.