• English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
  • Communities & Collections
  • Browse OpenUCT
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
  1. Home
  2. Browse by Subject

Browsing by Subject "Performance fatigability"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Open Access
    Modelling perception-action coupling in the phenomenological experience of “hitting the wall” during long-distance running with exercise induced muscle damage in highly trained runners
    (Springer International Publishing, 2018-07-10) Venhorst, Andreas; Micklewright, Dominic P; Noakes, Timothy D
    Background “Hitting the wall” (HTW) can be understood as a psychophysiological stress process characterised by (A) discrete and poignant onset, (B) dynamic interplay between physiological, affective, motivational, cognitive, and behavioural systems, and (C) unintended alteration of pace and performance. A preceding companion article investigated the psychophysiological responses to 20-km self-paced treadmill time trials after producing exercise-induced muscle damage (EIMD) via a standardised muscle-lengthening contraction protocol. Methods A 5-step procedure was applied determining the extent to which the observed data fit the hypothesised cause-effect relationships. Running with EIMD negatively impacts performance fatigability via (A) amplified physiological responses and a non-adaptive distress response and (B) deterioration in perceived fatigability: increase in perceived physical strain precedes decrease in valence, which in turn precedes increase in action crisis, eventually dissolving the initially aspired performance goal. Results First, haematological indicators of EIMD predicted increased blood cortisol concentration, which in turn predicted increased performance fatigability. Second, perceived physical strain explained 44% of the relationship between haematological indicators of EIMD and valence, which in turn predicted increased action crisis, which in turn predicted increased performance fatigability. The observed data fitted the hypothesised dual-pathway model well with good model-fit indices throughout. Conclusions The hypothesised interrelationships between physiological strain, perception, and heuristic and deliberative decision-making processes in self-regulated and goal-directed exercise behaviour were applied, tested, and confirmed: amplified physiological strain and non-adaptive distress response as well as strain-perception-thinking-action coupling impact performance fatigability. The findings provide novel insights into the psychophysiological processes that underpin the phenomenological experience of HTW and alteration in pacing behaviour and performance.
  • Loading...
    Thumbnail Image
    Item
    Open Access
    The Psychophysiological Regulation of Pacing Behaviour and Performance Fatigability During Long-Distance Running with Locomotor Muscle Fatigue and Exercise-Induced Muscle Damage in Highly Trained Runners
    (Springer International Publishing, 2018-07-10) Venhorst, Andreas; Micklewright, Dominic P; Noakes, Timothy D
    Background Locomotor muscle fatigue (LMMF) and exercise-induced muscle damage (EIMD) are common conditions experienced during long-distance running due to the pooled effect of mechanical and metabolic strain on the locomotor muscles. However, little is known about the instant effects of combined LMMF and EIMD on pacing behaviour and performance during the decisive final stages of ‘real-world’ long-distance running events. Methods Twenty-two highly trained runners (11 females) completed two maximal self-paced 20-km treadmill time trials in a counterbalanced crossover design: (A) in a tapered condition and (B) with LMMF and EIMD. Indicators of muscle damage, muscle metabolic strain, and endocrinological stress were assessed to investigate the physiological effects, and a three-dimensional framework of perceived fatigability was applied to investigate the perceptual effects of running with LMMF and EIMD on performance fatigability. Results LMMF and EIMD caused restrictions in work capacity and medium increases in blood leucocyte and neutrophil count, interleukin-6, and cortisol concentrations, collectively constituting a physiological milieu likely not conducive to high performance. LMMF and EIMD further caused large increases in perceived physical strain and large decreases in valence as well as large increases and decreases in action crisis and flow state, respectively. Conclusions Under the constraint of amplified physical duress, findings are suggestive of heuristic and rational antecedents in the goal disengagement process. Dynamic changes in physiological and perceptual effects of LMMF and EIMD are hypothesised to underpin the observed alterations in pacing behaviour and performance fatigability during long-distance running. The applied three-dimensional framework provides a more comprehensive understanding of strain-perception-thinking-action coupling in centrally regulated and goal-directed exercise behaviour.
UCT Libraries logo

Contact us

Jill Claassen

Manager: Scholarly Communication & Publishing

Email: openuct@uct.ac.za

+27 (0)21 650 1263

  • Open Access @ UCT

    • OpenUCT LibGuide
    • Open Access Policy
    • Open Scholarship at UCT
    • OpenUCT FAQs
  • UCT Publishing Platforms

    • UCT Open Access Journals
    • UCT Open Access Monographs
    • UCT Press Open Access Books
    • Zivahub - Open Data UCT
  • Site Usage

    • Cookie settings
    • Privacy policy
    • End User Agreement
    • Send Feedback

DSpace software copyright © 2002-2025 LYRASIS