Browsing by Subject "Molecular dating"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemOpen AccessBeing cosmopolitan: evolutionary history and phylogeography of a specialized raptor, the Osprey Pandion haliaetus(2015) Monti, Flavio; Duriez, Olivier; Arnal, Véronique; Dominici, Jean-Marie; Sforzi, Andrea; Fusani, Leonida; Grémillet, David; Montgelard, ClaudineBackgroundThe Osprey (Pandion haliaetus) is one of only six bird species with an almost world-wide distribution. We aimed at clarifying its phylogeographic structure and elucidating its taxonomic status (as it is currently separated into four subspecies). We tested six biogeographical scenarios to explain how the species’ distribution and differentiation took place in the past and how such a specialized raptor was able to colonize most of the globe.ResultsUsing two mitochondrial genes (cyt b and ND2), the Osprey appeared structured into four genetic groups representing quasi non-overlapping geographical regions. The group Indo-Australasia corresponds to the cristatus ssp, as well as the group Europe-Africa to the haliaetus ssp. In the Americas, we found a single lineage for both carolinensis and ridgwayi ssp, whereas in north-east Asia (Siberia and Japan), we discovered a fourth new lineage. The four lineages are well differentiated, contrasting with the low genetic variability observed within each clade. Historical demographic reconstructions suggested that three of the four lineages experienced stable trends or slight demographic increases. Molecular dating estimates the initial split between lineages at about 1.16Ma ago, in the Early Pleistocene.ConclusionsOur biogeographical inference suggests a pattern of colonization from the American continent towards the Old World. Populations of the Palearctic would represent the last outcomes of this colonization. At a global scale the Osprey complex may be composed of four different Evolutionary Significant Units, which should be treated as specific management units. Our study brought essential genetic clarifications, which have implications for conservation strategies in identifying distinct lineages across which birds should not be artificially moved through exchange/reintroduction schemes.Electronic supplementary materialThe online version of this article (doi:10.1186/s12862-015-0535-6) contains supplementary material, which is available to authorized users.
- ItemOpen AccessCatchments catch all in South African coastal lowlands: topography and palaeoclimate restricted gene flow in Nymania capensis (Meliaceae)—a multilocus phylogeographic and distribution modelling approach(2017) Potts, Alastair JBackground This study investigates orbitally-forced range dynamics at a regional scale by exploring the evolutionary history of Nymania capensis (Meliaceae) across the deeply incised landscapes of the subescarpment coastal lowlands of South Africa; a region that is home to three biodiversity hotspots (Succulent Karoo, Fynbos, and Maputaland-Pondoland-Albany hotspots). Methods A range of methods are used including: multilocus phylogeography (chloroplast and high- and low-copy nuclear DNA), molecular dating and species distribution modelling (SDM). Results The results support an ‘evolutionarily distinct catchment’ hypothesis where: (1) different catchments contain genetically distinct lineages, (2) limited genetic structuring was detected within basins whilst high structuring was detected between basins, and (3) within primary catchment populations display a high degree of genealogical lineage sorting. In addition, the results support a glacial refugia hypothesis as: (a) the timing of chloroplast lineage diversification is restricted to the Pleistocene in a landscape that has been relatively unchanged since the late Pliocene, and (b) the projected LGM distribution of suitable climate for N. capensis suggest fragmentation into refugia that correspond to the current phylogeographic populations. Discussion This study highlights the interaction of topography and subtle Pleistocene climate variations as drivers limiting both seed and pollen flow along these lowlands. This lends support to the region’s large-scale conservation planning efforts, which used catchments as foundational units for conservation as these are likely to be evolutionarily significant units.