Browsing by Subject "Malaria, Falciparum"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemOpen AccessNonlinear mixed effects modeling of gametocyte carriage in patients with uncomplicated malaria(BioMed Central Ltd, 2010) Distiller, Greg; Little, Francesca; Barnes, KarenBACKGROUND:Gametocytes are the sexual form of the malaria parasite and the main agents of transmission. While there are several factors that influence host infectivity, the density of gametocytes appears to be the best single measure that is related to the human host's infectivity to mosquitoes. Despite the obviously important role that gametocytes play in the transmission of malaria and spread of anti-malarial resistance, it is common to estimate gametocyte carriage indirectly based on asexual parasite measurements. The objective of this research was to directly model observed gametocyte densities over time, during the primary infection. METHODS: Of 447 patients enrolled in sulphadoxine-pyrimethamine therapeutic efficacy studies in South Africa and Mozambique, a subset of 103 patients who had no gametocytes pre-treatment and who had at least three non-zero gametocyte densities over the 42-day follow up period were included in this analysis. RESULTS: A variety of different functions were examined. A modified version of the critical exponential function was selected for the final model given its robustness across different datasets and its flexibility in assuming a variety of different shapes. Age, site, initial asexual parasite density (logged to the base 10), and an empirical patient category were the co-variates that were found to improve the model. CONCLUSIONS: A population nonlinear modeling approach seems promising and produced a flexible function whose estimates were stable across various different datasets. Surprisingly, dihydrofolate reductase and dihydropteroate synthetase mutation prevalence did not enter the model. This is probably related to a lack of power (quintuple mutations n = 12), and informative censoring; treatment failures were withdrawn from the study and given rescue treatment, usually prior to completion of follow up.
- ItemOpen AccessSingle low-dose primaquine for blocking transmission of Plasmodium falciparum malaria – a proposed model-derived age-based regimen for sub-Saharan Africa(2018) Taylor, W Robert; Naw, Htee Khu; Maitland, Kathryn; Williams, Thomas N; Kapulu, Melissa; D’Alessandro, Umberto; Berkley, James A; Bejon, Philip; Okebe, Joseph; Achan, Jane; Amambua, Alfred Ngwa; Affara, Muna; Nwakanma, Davis; van Geertruyden, Jean-Pierre; Mavoko, Muhindo; Lutumba, Pascal; Matangila, Junior; Brasseur, Philipe; Piola, Patrice; Randremanana, Rindra; Lasry, Estrella; Fanello, Caterina; Onyamboko, Marie; Schramm, Birgit; Yah, Zolia; Jones, Joel; Fairhurst, Rick M; Diakite, Mahamadou; Malenga, Grace; Molyneux, Malcolm; Rwagacondo, Claude; Obonyo, CharlesBACKGROUND: In 2012, the World Health Organization recommended blocking the transmission of Plasmodium falciparum with single low-dose primaquine (SLDPQ, target dose 0.25 mg base/kg body weight), without testing for glucose-6-phosphate dehydrogenase deficiency (G6PDd), when treating patients with uncomplicated falciparum malaria. We sought to develop an age-based SLDPQ regimen that would be suitable for sub-Saharan Africa. METHODS: Using data on the anti-infectivity efficacy and tolerability of primaquine (PQ), the epidemiology of anaemia, and the risks of PQ-induced acute haemolytic anaemia (AHA) and clinically significant anaemia (CSA), we prospectively defined therapeutic-dose ranges of 0.15-0.4 mg PQ base/kg for children aged 1-5 years and 0.15-0.5 mg PQ base/kg for individuals aged ≥6 years (therapeutic indices 2.7 and 3.3, respectively). We chose 1.25 mg PQ base for infants aged 6-11 months because they have the highest rate of baseline anaemia and the highest risks of AHA and CSA. We modelled an anthropometric database of 661,979 African individuals aged ≥6 months (549,127 healthy individuals, 28,466 malaria patients and 84,386 individuals with other infections/illnesses) by the Box-Cox transformation power exponential and tested PQ doses of 1-15 mg base, selecting dosing groups based on calculated mg/kg PQ doses. RESULTS: From the Box-Cox transformation power exponential model, five age categories were selected: (i) 6-11 months (n = 39,886, 6.03%), (ii) 1-5 years (n = 261,036, 45.46%), (iii) 6-9 years (n = 20,770, 3.14%), (iv) 10-14 years (n = 12,155, 1.84%) and (v) ≥15 years (n = 328,132, 49.57%) to receive 1.25, 2.5, 5, 7.5 and 15 mg PQ base for corresponding median (1st and 99th centiles) mg/kg PQ base of: (i) 0.16 (0.12-0.25), (ii) 0.21 (0.13-0.37), (iii) 0.25 (0.16-0.38), (iv) 0.26 (0.15-0.38) and (v) 0.27 (0.17-0.40). The proportions of individuals predicted to receive optimal therapeutic PQ doses were: 73.2 (29,180/39,886), 93.7 (244,537/261,036), 99.6 (20,690/20,770), 99.4 (12,086/12,155) and 99.8% (327,620/328,132), respectively. CONCLUSIONS: We plan to test the safety of this age-based dosing regimen in a large randomised placebo-controlled trial (ISRCTN11594437) of uncomplicated falciparum malaria in G6PDd African children aged 0.5 - 11 years. If the regimen is safe and demonstrates adequate pharmacokinetics, it should be used to support malaria elimination.