Browsing by Subject "Lipoprotein Lipase"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemOpen AccessLipoprotein lipase activity is decreased in a large cohort of patients with coronary artery disease and is associated with changes in lipids and lipoproteins(1999) Hockman, Dorit; Henderson,Howard E; Hockman, Dorit; Kastelein, John P; Zwinderman, Aeilko H; Gagné, Eric; Jukema, J Wouter; Reymer, Paul W A; Groenemeyer, Björn E; Hockman, Dorit; Lie, Kong I; Bruschke, Albert V G; Hayden, Michael R; Jansen, HansLipoprotein lipase (LPL) is crucial in the hydrolysis of triglycerides (TG) in TG-rich lipoproteins in the formation of HDL particles. As both these lipoproteins play an important role in the pathogenesis of atherosclerotic vascular disease, we sought to assess the relationship between post-heparin LPL (PH-LPL) activity and lipids and lipoproteins in a large, well-defined cohort of Dutch males with coronary artery disease (CAD). These subjects were drawn from the REGRESS study, totaled 730 in number and were evaluated against 75 healthy, normolipidemic male controls. Fasting mean PH-LPL activity in the CAD subjects was 108 46 mU/ml, compared to 138 44 mU/ml in controls (P < 0.0001). When these patients were divided into activity quartiles, those in the lowest versus the highest quartile had higher levels of TG (P < 0.001), VLDLc and VLDL-TG (P = 0.001). Conversely, levels of TC, LDL, and HDLc were lower in these patients (P = 0.001, P = 0.02, and P = 0.001, respectively). Also, in this cohort PH-LPL relationships with lipids and lipoproteins were not altered by apoE genotypes. The frequency of common mutations in the LPL gene associated with partial LPL deficiency (N291S and D9N carriers) in the lowest quartile for LPL activity was more than double the frequency in the highest quartile (12.0% vs. 5.0%; P = 0.006). By contrast, the frequency of the S447X LPL variant rose from 11.5% in the lowest to 18.3% (P = 0.006) in the highest quartile. This study, in a large cohort of CAD patients, has shown that PH-LPL activity is decreased (22%; P = 0.001) when compared to controls; that the D9N and N291S, and S447X LPL variants are genetic determinants, respectively, in CAD patients of low and high LPL PH-LPL activities; and that PH-LPL activity is strongly associated with changes in lipids and lipoproteins.
- ItemOpen AccessPlasma and vessel wall lipoprotein lipase have different roles in atherosclerosis(2000) Clee, S M; Bissada, N; Miao, F; Miao, L; Marais, A D; Henderson, H E; Steures, P; McManus, J; McManus, B; LeBoeuf, R C; Kastelein, J J; Hayden, M RLipoprotein lipase (LPL) is a key enzyme in lipoprotein metabolism, and has been hypothesized to exert either pro- or anti-atherogenic effects, depending on its localization. Decreased plasma LPL activity is associated with the high triglyceride (TG);-low HDL phenotype that is often observed in patients with premature vascular disease. In contrast, in the vessel wall, decreased LPL may be associated with less lipoprotein retention due to many potential mechanisms and, therefore, decreased foam cell formation. To directly assess this hypothesis, we have distinguished between the effects of variations in plasma and/or vessel wall LPL on atherosclerosis susceptibility in apoE-deficient mice. Reduced LPL in both plasma and vessel wall (LPL(+/-)E(-/-)) was associated with increased TG and increased total cholesterol (TC) compared with LPL(+/+)E(-/-) sibs. However despite their dyslipidemia, LPL(+/-)E(-/-) mice had significantly reduced lesion areas compared to the LPL(+/+)E(-/-) mice. Thus, decreased vessel wall LPL was associated with decreased lesion formation even in the presence of reduced plasma LPL activity. In contrast, transgenic mice with increased plasma LPL but with no increase in LPL expression in macrophages, and thus the vessel wall, had decreased TG and TC and significantly decreased lesion areas compared with LPL(+/+)E(-/-) mice. This demonstrates that increased plasma LPL activity alone, in the absence of an increase in vessel wall LPL, is associated with reduced susceptibility to atherosclerosis. Taken together, these results provide in vivo evidence that the contribution of LPL to atherogenesis is significantly influenced by the balance between vessel wall protein (pro-atherogenic) and plasma activity (anti-atherogenic)