Browsing by Subject "Leishmania major"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemOpen AccessBALB/c mice deficient in CD4 T cell IL-4Rα expression control Leishmania mexicana Load although female but not male mice develop a healer phenotype(Public Library of Science, 2011) Bryson, Karen J; Millington, Owain R; Mokgethi, Thabang; McGachy, H Adrienne; Brombacher, Frank; Alexander, JamesImmunologically intact BALB/c mice infected with Leishmania mexicana develop non-healing progressively growing lesions associated with a biased Th2 response while similarly infected IL-4Rα-deficient mice fail to develop lesions and develop a robust Th1 response. In order to determine the functional target(s) for IL-4/IL-13 inducing non-healing disease, the course of L. mexicana infection was monitored in mice lacking IL-4Rα expression in specific cellular compartments. A deficiency of IL-4Rα expression on macrophages/neutrophils (in LysMcreIL-4Rα−/lox animals) had minimal effect on the outcome of L. mexicana infection compared with control (IL-4Rα−/flox) mice. In contrast, CD4+ T cell specific (LckcreIL-4Rα−/lox) IL-4Rα−/− mice infected with L. mexicana developed small lesions, which subsequently healed in female mice, but persisted in adult male mice. While a strong Th1 response was manifest in both male and female CD4+ T cell specific IL-4Rα−/− mice infected with L. mexicana, induction of IL-4 was manifest in males but not females, independently of CD4+ T cell IL-4 responsiveness. Similar results were obtained using pan-T cell specific (iLckcreIL-4Rα−/lox) IL-4Rα−/− mice. Collectively these data demonstrate that upon infection with L. mexicana, initial lesion growth in BALB/c mice is dependent on non-T cell population(s) responsive to IL-4/IL-13 while progressive infection is dependent on CD4+ T cells responsive to IL-4.
- ItemOpen AccessDeletion of IL-4 receptor alpha on dendritic cells renders BALB/c mice hypersusceptible to Leishmania major infection(Public Library of Science, 2013) Hurdayal, Ramona; Nieuwenhuizen, Natalie E; Revaz-Breton, Mélanie; Smith, Liezel; Hoving, Jennifer C; Parihar, Suraj P; Reizis, Boris; Brombacher, FrankIn BALB/c mice, susceptibility to infection with the intracellular parasite Leishmania major is driven largely by the development of T helper 2 (Th2) responses and the production of interleukin (IL)-4 and IL-13, which share a common receptor subunit, the IL-4 receptor alpha chain (IL-4Rα). While IL-4 is the main inducer of Th2 responses, paradoxically, it has been shown that exogenously administered IL-4 can promote dendritic cell (DC) IL-12 production and enhance Th1 development if given early during infection. To further investigate the relevance of biological quantities of IL-4 acting on DCs during in vivo infection, DC specific IL-4Rα deficient (CD11ccreIL-4Rα-/lox) BALB/c mice were generated by gene targeting and site-specific recombination using the cre/loxP system under control of the cd11c locus. DNA, protein, and functional characterization showed abrogated IL-4Rα expression on dendritic cells and alveolar macrophages in CD11ccreIL-4Rα-/lox mice. Following infection with L. major, CD11ccreIL-4Rα-/lox mice became hypersusceptible to disease, presenting earlier and increased footpad swelling, necrosis and parasite burdens, upregulated Th2 cytokine responses and increased type 2 antibody production as well as impaired classical activation of macrophages. Hypersusceptibility in CD11ccreIL-4Rα-/lox mice was accompanied by a striking increase in parasite burdens in peripheral organs such as the spleen, liver, and even the brain. DCs showed increased parasite loads in CD11ccreIL-4Rα-/lox mice and reduced iNOS production. IL-4Rα-deficient DCs produced reduced IL-12 but increased IL-10 due to impaired DC instruction, with increased mRNA expression of IL-23p19 and activin A, cytokines previously implicated in promoting Th2 responses. Together, these data demonstrate that abrogation of IL-4Rα signaling on DCs is severely detrimental to the host, leading to rapid disease progression, and increased survival of parasites in infected DCs due to reduced killing effector functions.
- ItemOpen AccessDeletion of IL-4Ralpha on CD4 T cells renders BALB/c mice resistant to Leishmania major infection(Public Library of Science, 2007) Radwanska, Magdalena; Cutler, Antony J; Hoving, J Claire; Magez, Stefan; Holscher, Christoph; Bohms, Andreas; Arendse, Berenice; Kirsch, Richard; Hunig, Thomas; Alexander, JamesAuthor Summary Leishmaniasis is a disease induced by a protozoan parasite and transmitted by the sandfly. Several forms of infection are identified, and the different diseases have wide-ranging symptoms from localized cutaneous sores to visceral disease affecting many internal organs. Animal models of human cutaneous leishmaniasis have been established in which disease is induced by infecting mice subcutaneously with Leishmania major. Different strains of inbred mice have been found to be susceptible or resistant to L. major infection. "Healer" C57BL/6 mice control infection with transient lesion development. The protective response to infection in this strain is dominated by type 1 cytokines inducing parasite killing by nitric oxide. Conversely, "nonhealer" BALB/c mice are unable to control infection and develop nonhealing lesions associated with a dominant type 2 immune response driven by cytokines IL-4 and IL-13. However, mice deficient in IL-4/IL-13 signaling are not protected against development of cutaneous leishmaniasis. Here we describe a BALB/c mouse where the ability to polarize to a dominant type 2 response is removed by cell-specific deletion of the receptor for IL-4/IL-13 on CD4 + T cells. These mice are resistant to L. major infection similar to C57BL/6 mice, which highlights the role of T helper 2 cells in driving susceptibility and the protective role of IL-4/IL-13 signaling in non-CD4 + T cells in BALB/c mice.
- ItemOpen AccessDendritic cell-mediated vaccination relies on interleukin-4 receptor signaling to avoid tissue damage after Leishmania major infection of BALB/c mice(Public Library of Science, 2012) Masic, Anita; Hurdayal, Ramona; Nieuwenhuizen, Natalie E; Brombacher, Frank; Moll, HeidrunPrevention of tissue damages at the site of Leishmania major inoculation can be achieved if the BALB/c mice are systemically given L. major antigen (LmAg)-loaded bone marrow-derived dendritic cells (DC) that had been exposed to CpG-containing oligodeoxynucleotides (CpG ODN). As previous studies allowed establishing that interleukin-4 (IL-4) is involved in the redirection of the immune response towards a type 1 profile, we were interested in further exploring the role of IL-4. Thus, wild-type (wt) BALB/c mice or DC-specific IL-4 receptor alpha (IL-4Rα)-deficient (CD11ccreIL-4Rα−/lox) BALB/c mice were given either wt or IL-4Rα-deficient LmAg-loaded bone marrow-derived DC exposed or not to CpG ODN prior to inoculation of 2×105 stationary-phase L. major promastigotes into the BALB/c footpad. The results provide evidence that IL4/IL-4Rα-mediated signaling in the vaccinating DC is required to prevent tissue damage at the site of L. major inoculation, as properly conditioned wt DC but not IL-4Rα-deficient DC were able to confer resistance. Furthermore, uncontrolled L. major population size expansion was observed in the footpad and the footpad draining lymph nodes of CD11ccreIL-4Rα−/lox mice immunized with CpG ODN-exposed LmAg-loaded IL-4Rα-deficient DC, indicating the influence of IL-4Rα-mediated signaling in host DC to control parasite replication. In addition, no footpad damage occurred in BALB/c mice that were systemically immunized with LmAg-loaded wt DC doubly exposed to CpG ODN and recombinant IL-4. We discuss these findings and suggest that the IL4/IL4Rα signaling pathway could be a key pathway to trigger when designing vaccines aimed to prevent damaging processes in tissues hosting intracellular microorganisms.