Browsing by Subject "Host-pathogen interactions"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- ItemOpen AccessDelayed goblet cell hyperplasia, acetylcholine receptor expression, and worm expulsion in SMC-specific IL-4Ralpha-deficient mice(Public Library of Science, 2007) Horsnell, William G C; Cutler, Antony J; Hoving, J Claire; Mearns, Helen; Myburgh, Elmarie; Arendse, Berenice; Finkelman, Fred D; Owens, Gary K; Erle, Dave; Brombacher, FrankInterleukin 4 receptor α (IL-4Rα) is essential for effective clearance of gastrointestinal nematode infections. Smooth muscle cells are considered to play a role in the type 2 immune response-driven expulsion of gastrointestinal nematodes. Previous studies have shown in vitro that signal transducer and activator of transcription 6 signaling in response to parasitic nematode infection significantly increases smooth muscle cell contractility. Inhibition of the IL-4Rα pathway inhibits this response. How this response manifests itself in vivo is unknown. In this study, smooth muscle cell IL-4Rα-deficient mice (SM-MHC Cre IL-4Rα −/lox ) were generated and characterized to uncover any role for IL-4/IL-13 in this non-immune cell type in response to Nippostrongylus brasiliensis infection. IL-4Rα was absent from α-actin-positive smooth muscle cells, while other cell types showed normal IL-4Rα expression, thus demonstrating efficient cell-type-specific deletion of the IL-4Rα gene. N. brasiliensis -infected SM-MHC Cre IL-4Rα −/lox mice showed delayed ability to resolve infection with significantly prolonged fecal egg recovery and delayed worm expulsion. The delayed expulsion was related to a delayed intestinal goblet cell hyperplasia, reduced T helper 2 cytokine production in the mesenteric lymph node, and reduced M3 muscarinic receptor expression during infection. Together, these results demonstrate that in vivo IL-4Rα-responsive smooth muscle cells are beneficial for N. brasiliensis expulsion by coordinating T helper 2 cytokine responses, goblet hyperplasia, and acetylcholine responsiveness, which drive smooth muscle cell contractions.
- ItemOpen AccessDendritic cell-mediated vaccination relies on interleukin-4 receptor signaling to avoid tissue damage after Leishmania major infection of BALB/c mice(Public Library of Science, 2012) Masic, Anita; Hurdayal, Ramona; Nieuwenhuizen, Natalie E; Brombacher, Frank; Moll, HeidrunPrevention of tissue damages at the site of Leishmania major inoculation can be achieved if the BALB/c mice are systemically given L. major antigen (LmAg)-loaded bone marrow-derived dendritic cells (DC) that had been exposed to CpG-containing oligodeoxynucleotides (CpG ODN). As previous studies allowed establishing that interleukin-4 (IL-4) is involved in the redirection of the immune response towards a type 1 profile, we were interested in further exploring the role of IL-4. Thus, wild-type (wt) BALB/c mice or DC-specific IL-4 receptor alpha (IL-4Rα)-deficient (CD11ccreIL-4Rα−/lox) BALB/c mice were given either wt or IL-4Rα-deficient LmAg-loaded bone marrow-derived DC exposed or not to CpG ODN prior to inoculation of 2×105 stationary-phase L. major promastigotes into the BALB/c footpad. The results provide evidence that IL4/IL-4Rα-mediated signaling in the vaccinating DC is required to prevent tissue damage at the site of L. major inoculation, as properly conditioned wt DC but not IL-4Rα-deficient DC were able to confer resistance. Furthermore, uncontrolled L. major population size expansion was observed in the footpad and the footpad draining lymph nodes of CD11ccreIL-4Rα−/lox mice immunized with CpG ODN-exposed LmAg-loaded IL-4Rα-deficient DC, indicating the influence of IL-4Rα-mediated signaling in host DC to control parasite replication. In addition, no footpad damage occurred in BALB/c mice that were systemically immunized with LmAg-loaded wt DC doubly exposed to CpG ODN and recombinant IL-4. We discuss these findings and suggest that the IL4/IL4Rα signaling pathway could be a key pathway to trigger when designing vaccines aimed to prevent damaging processes in tissues hosting intracellular microorganisms.
- ItemOpen AccessHost specificity and co-speciation in avian haemosporidia in the Western Cape, South Africa(Public Library of Science, 2014) Okanga, Sharon; Cumming, Graeme S; Hockey, Philip A R; Nupen, Lisa; Peters, Jeffrey LHost and pathogen ecology are often closely linked, with evolutionary processes often leading to the development of host specificity traits in some pathogens. Host specificity may range from ‘generalist’, where pathogens infect any available competent host; to ‘specialist’, where pathogens repeatedly infect specific host species or families. Avian malaria ecology in the region remains largely unexplored, despite the presence of vulnerable endemic avian species. We analysed the expression of host specificity in avian haemosporidia, by applying a previously developed host specificity index to lineages isolated from wetland passerines in the Western Cape, South Africa. Parasite lineages were isolated using PCR and identified when possible using matching lineages deposited in GenBank and in MalAvi. Parasitic clades were constructed from phylogenetic trees consisting of Plasmodium and Haemoproteus lineages. Isolated lineages matched some strains of Plasmodium relictum , P. elongatum , Haemoproteus sylvae and H. lanii . Plasmodium lineages infected a wide range of hosts from several avian families in a generalist pattern of infection. Plasmodium spp. also exhibited an infection trend according to host abundance rather than host species. By contrast, Haemoproteus lineages were typically restricted to one or two host species or families, and displayed higher host fidelity than Plasmodium spp. The findings confirm that a range of host specificity traits are exhibited by avian haemosporidia in the region. The traits show the potential to not only impact infection prevalence within specific host species, but also to affect patterns of infection at the community level.
- ItemOpen AccessPredicting and analyzing interactions between Mycobacterium tuberculosis and its human host(Public Library of Science, 2013) Rapanoel, Holifidy A; Mazandu, Gaston K; Mulder, Nicola JThe outcome of infection by Mycobacterium tuberculosis (Mtb) depends greatly on how the host responds to the bacteria and how the bacteria manipulates the host, which is facilitated by protein-protein interactions. Thus, to understand this process, there is a need for elucidating protein interactions between human and Mtb, which may enable us to characterize specific molecular mechanisms allowing the bacteria to persist and survive under different environmental conditions. In this work, we used the interologs method based on experimentally verified intra-species and inter-species interactions to predict human-Mtb functional interactions. These interactions were further filtered using known human-Mtb interactions and genes that are differentially expressed during infection, producing 190 interactions. Further analysis of the subcellular location of proteins involved in these human-Mtb interactions confirms feasibility of these interactions. We also conducted functional analysis of human and Mtb proteins involved in these interactions, checking whether these proteins play a role in infection and/or disease, and enriching Mtb proteins in a previously predicted list of drug targets. We found that the biological processes of the human interacting proteins suggested their involvement in apoptosis and production of nitric oxide, whereas those of the Mtb interacting proteins were relevant to the intracellular environment of Mtb in the host. Mapping these proteins onto KEGG pathways highlighted proteins belonging to the tuberculosis pathway and also suggested that Mtb proteins might use the host to acquire nutrients, which is in agreement with the intracellular lifestyle of Mtb. This indicates that these interactions can shed light on the interplay between Mtb and its human host and thus, contribute to the process of designing novel drugs with new biological mechanisms of action.
- ItemOpen AccessProteomic Analysis of Excretory-Secretory Products of Mesocestoides corti Metacestodes Reveals Potential Suppressors of Dendritic Cell Functions(Public Library of Science, 2016) Vendelova, Emilia; De Lima, Jeferson Camargo; Lorenzatto, Karina Rodrigues; Monteiro, Karina Mariante; Mueller, Thomas; Veepaschit, Jyotishman; Grimm, Clemens; Brehm, Klaus; Hrčková, Gabriela; Lutz, Manfred B; Ferreira, Henrique B; Nono, Justin KomguepAuthor Summary: The metacestode larval stages of life-threatening tapeworms grow within the organs of its mammalian hosts, thus causing severe and long-lasting morbidity. Immunosuppression, which mainly depends on factors that are released or leaking from the parasite, plays an important role in both survival and proliferation of the larvae. These parasite-derived molecules are potential targets for developing new anti-parasitic drugs and/or improving the effectiveness of current therapies. Moreover, an optimized use of such factors could help to minimize pathologies resulting from uncontrolled immune responses, like allergies and autoimmune diseases. The authors herein demonstrate that larvae from a parasitic cestode release factors that sufficiently support the suppression of dendritic cells, a set of innate immune cells that recognizes and initiates host immune responses against invading pathogens. Employing modern analytic proteomic tools combined with immunological bioassays, several cestode-derived candidate immunomodulators were identified. This is the first bioassay-guided comprehensive library of candidate immunomodulators from a tissue-dwelling cestode larva. This work validates the unmet value of the Mesocestoides corti system in characterizing the mechanisms of host immunomodulation by metacestodes and reveals the largest database of candidate metacestode-derived immunomodulators until date.
- ItemOpen AccessThe role of B-cells and IgM antibodies in parasitemia, anemia, and VSG switching in Trypanosoma brucei-infected mice(Public Library of Science, 2008) Magez, Stefan; Schwegmann, Anita; Atkinson, Robert; Claes, Filip; Drennan, Michael; De Baetselier, Patrick; Brombacher, FrankAuthor Summary African trypanosomiasis is a disease caused by different species of extracellular flagellated protozoan trypanosome parasites. Trypanosomes have developed a mechanism of regular antigenic variation of their variant-specific surface glycoprotein (VSG) coat which allows chronic infection. Replacement of this coat occurs at rapid regular time intervals, allowing the parasite to escape from an effective host antibody responses. So far, primary T-cell independent antibody responses have been described to constitute the main host defense mechanism, relying largely on IgM antibody induction. Using genetically engineered B lymphocyte- or IgM-deficient mouse strains, we show that lack of B-cells or IgM did not prevent infection-associated anemia. More importantly, we show that in the absence of IgM, parasitemia was controlled almost as well as in wild-type mice, with only slightly increased mortality. In addition, we show in vivo that antigenic variation is not affected by the lack of IgM.
- ItemOpen AccessSurfactant Protein-D is essential for immunity to Helminth Infection(Public Library of Science, 2016) Thawer, Sumaiyya; Auret, Jennifer; Schnoeller, Corinna; Chetty, Alisha; Smith, Katherine; Darby, Matthew; Roberts, Luke; Mackay, Rosie-Marie; Whitwell, Harry J; Timms, John F; Madsen, Jens; Selkirk, Murray E; Brombacher, Frank; Clark, Howard William; Horsnell, William G CAuthor Summary Infections by parasitic worms are very common, and controlling them is a major medical and veterinary challenge. Very few drugs exist to treat them, and the parasites can develop resistance to these. In order to find new ways to control worm infections, understanding how our immune system responds to them is essential. Many important parasitic worm infections move through the host lung. In this study we show that a major secreted protein in the lung, Surfactant Protein D (SP-D), is essential for immunity to a parasitic worm infection. We found that this protein binds to worm larvae in the lung to help the immune system kill them. Infecting mice that do not express SP-D with worms demonstrates SP-D is important in this immune response. These mice are unable to launch an effective anti-worm immune response and have many more worms in their intestine compared to mice that do express SP-D. We also show that if we increase SP-D levels in the lung the mouse has better immunity to worms. Together this shows for the first time that SP-D is very important for immunity to worm infections.