• English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
  • Communities & Collections
  • Browse OpenUCT
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
  1. Home
  2. Browse by Subject

Browsing by Subject "Gene regulation"

Now showing 1 - 12 of 12
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Open Access
    Accumulation of splice variants and transcripts in response to PI3K inhibition in T cells
    (Public Library of Science, 2013) Riedel, Alice; Mofolo, Boitumelo; Avota, Elita; Schneider-Schaulies, Sibylle; Meintjes, Ayton; Mulder, Nicola; Kneitz, Susanne
    BACKGROUND: Measles virus (MV) causes T cell suppression by interference with phosphatidylinositol-3-kinase (PI3K) activation. We previously found that this interference affected the activity of splice regulatory proteins and a T cell inhibitory protein isoform was produced from an alternatively spliced pre-mRNA. Hypothesis Differentially regulated and alternatively splice variant transcripts accumulating in response to PI3K abrogation in T cells potentially encode proteins involved in T cell silencing. METHODS: To test this hypothesis at the cellular level, we performed a Human Exon 1.0 ST Array on RNAs isolated from T cells stimulated only or stimulated after PI3K inhibition. We developed a simple algorithm based on a splicing index to detect genes that undergo alternative splicing (AS) or are differentially regulated (RG) upon T cell suppression. RESULTS: Applying our algorithm to the data, 9% of the genes were assigned as AS, while only 3% were attributed to RG. Though there are overlaps, AS and RG genes differed with regard to functional regulation, and were found to be enriched in different functional groups. AS genes targeted extracellular matrix (ECM)-receptor interaction and focal adhesion pathways, while RG genes were mainly enriched in cytokine-receptor interaction and Jak-STAT. When combined, AS/RG dependent alterations targeted pathways essential for T cell receptor signaling, cytoskeletal dynamics and cell cycle entry. CONCLUSIONS: PI3K abrogation interferes with key T cell activation processes through both differential expression and alternative splicing, which together actively contribute to T cell suppression.
  • Loading...
    Thumbnail Image
    Item
    Open Access
    Chromosome 9p21 SNPs associated with multiple disease phenotypes correlate with ANRIL expression
    (Public Library of Science, 2010) Cunnington, Michael S; Koref, Mauro Santibanez; Mayosi, Bongani M; Burn, John; Keavney, Bernard
    Author Summary Genetic variants on chromosome 9p21 have been associated with several important diseases including coronary artery disease, diabetes, and multiple cancers. Most of the risk variants in this region do not alter any protein sequence and are therefore likely to act by influencing the expression of nearby genes. We investigated whether chromosome 9p21 variants are correlated with expression of the three nearest genes ( CDKN2A , CDKN2B , and ANRIL ) which might mediate the association with disease. Using two different techniques to study effects on expression in blood from two separate populations of healthy volunteers, we show that variants associated with disease are all correlated with ANRIL expression, but associations with the other two genes are weaker and less consistent. Multiple genetic variants are independently associated with expression of all three genes. Although total expression levels of CDKN2A , CDKN2B , and ANRIL are positively correlated, individual genetic variants influence ANRIL and CDKN2B expression in opposite directions, suggesting a possible role of ANRIL in CDKN2B regulation. Our study suggests that modulation of ANRIL expression mediates susceptibility to several important human diseases.
  • Loading...
    Thumbnail Image
    Item
    Open Access
    Defence responses of Arabidopsis thaliana to infection by Pseudomonas syringae are regulated by the circadian clock
    (Public Library of Science, 2011) Bhardwaj, Vaibhav; Meier, Stuart; Petersen, Lindsay N; Ingle, Robert A; Roden, Laura C
    The circadian clock allows plants to anticipate predictable daily changes in abiotic stimuli, such as light; however, whether the clock similarly allows plants to anticipate interactions with other organisms is unknown. Here we show that Arabidopsis thaliana (Arabidopsis) has circadian clock-mediated variation in resistance to the virulent bacterial pathogen Pseudomonas syringae pv. tomato DC3000 ( Pst DC3000), with plants being least susceptible to infection in the subjective morning. We suggest that the increased resistance to Pst DC3000 observed in the morning in Col-0 plants results from clock-mediated modulation of pathogen associated molecular pattern (PAMP)-triggered immunity. Analysis of publicly available microarray data revealed that a large number of Arabidopsis defence-related genes showed both diurnal- and circadian-regulation, including genes involved in the perception of the PAMP flagellin which exhibit a peak in expression in the morning. Accordingly, we observed that PAMP-triggered callose deposition was significantly higher in wild-type plants inoculated with Pst DC3000 hrpA in the subjective morning than in the evening, while no such temporal difference was evident in arrhythmic plants. Our results suggest that PAMP-triggered immune responses are modulated by the circadian clock and that temporal regulation allows plants to anticipate and respond more effectively to pathogen challenges in the daytime.
  • Loading...
    Thumbnail Image
    Item
    Open Access
    Gametophytic selection in Arabidopsis thaliana supports the selective model of intron length reduction
    (Public Library of Science, 2005) Seoighe, Cathal; Gehring, Chris; Hurst, Laurence D
    Why do highly expressed genes have small introns? This is an important issue, not least because it provides a testing ground to compare selectionist and neutralist models of genome evolution. Some argue that small introns are selectively favoured to reduce the costs of transcription. Alternatively, large introns might permit complex regulation, not needed for highly expressed genes. This "genome design" hypothesis evokes a regionalized model of control of expression and hence can explain why intron size covaries with intergene distance, a feature also consistent with the hypothesis that highly expressed genes cluster in genomic regions with high deletion rates. As some genes are expressed in the haploid stage and hence subject to especially strong purifying selection, the evolution of genes in Arabidopsis provides a novel testing ground to discriminate between these possibilities. Importantly, controlling for expression level, genes that are expressed in pollen have shorter introns than genes that are expressed in the sporophyte. That genes flanking pollen-expressed genes have average-sized introns and intergene distances argues against regional mutational biases and genomic design. These observations thus support the view that selection for efficiency contributes to the reduction in intron length and provide the first report of a molecular signature of strong gametophytic selection.
  • Loading...
    Thumbnail Image
    Item
    Open Access
    The injectable-only contraceptive medroxyprogesterone acetate, unlike norethisterone acetate and progesterone, regulates inflammatory genes in endocervical cells via the glucocorticoid receptor
    (Public Library of Science, 2014) Govender, Yashini; Avenant, Chanel; Verhoog, Nicolette J D; Ray, Roslyn M; Grantham, Nicholas J; Africander, Donita; Hapgood, Janet P
    Clinical studies suggest that the injectable contraceptive medroxyprogesterone acetate (MPA) increases susceptibility to infections such as HIV-1, unlike the injectable contraceptive norethisterone enanthate (NET-EN). We investigated the differential effects, molecular mechanism of action and steroid receptor involvement in gene expression by MPA as compared to NET and progesterone (P4) in the End1/E6E7 cell line model for the endocervical epithelium, a key point of entry for pathogens in the female genital mucosa. MPA, unlike NET-acetate (NET-A) and P4, increases mRNA expression of the anti-inflammatory GILZ and IκBα genes. Similarly, MPA unlike NET-A, decreases mRNA expression of the pro-inflammatory IL-6, IL-8 and RANTES genes, and IL-6 and IL-8 protein levels. The predominant steroid receptor expressed in the End1/E6E7 and primary endocervical epithelial cells is the glucocorticoid receptor (GR), and GR knockdown experiments show that the anti-inflammatory effects of MPA are mediated by the GR. Chromatin-immunoprecipitation results suggest that MPA, unlike NET-A and P4, represses pro-inflammatory cytokine gene expression in cervical epithelial cells via a mechanism involving recruitment of the GR to cytokine gene promoters, like the GR agonist dexamethasone. This is at least in part consistent with direct effects on transcription, without a requirement for new protein synthesis. Dose response analysis shows that MPA has a potency of ∼24 nM for transactivation of the anti-inflammatory GILZ gene and ∼4-20 nM for repression of the pro-inflammatory genes, suggesting that these effects are likely to be relevant at injectable contraceptive doses of MPA. These findings suggest that in the context of the genital mucosa, these GR-mediated glucocorticoid-like effects of MPA in cervical epithelial cells are likely to play a critical role in discriminating between the effects on inflammation caused by different progestins and P4 and hence susceptibility to genital infections, given the predominant expression of the GR in primary endocervical epithelial cells.
  • Loading...
    Thumbnail Image
    Item
    Open Access
    Kisspeptin regulation of genes involved in cell invasion and angiogenesis in first trimester human trophoblast cells
    (Public Library of Science, 2014) Francis, Víctor A; Abera, Aron B; Matjila, Mushi; Millar, Robert P; Katz, Arieh A
    The precise regulation of extravillous trophoblast invasion of the uterine wall is a key process in successful pregnancies. Kisspeptin (KP) has been shown to inhibit cancer cell metastasis and placental trophoblast cell migration. In this study primary cultures of first trimester human trophoblast cells have been utilized in order to study the regulation of invasion and angiogenesis-related genes by KP. Trophoblast cells were isolated from first trimester placenta and their identity was confirmed by immunostaining for cytokeratin-7. Real-time quantitative RT-PCR demonstrated that primary trophoblast cells express higher levels of GPR54 (KP receptor) and KP mRNA than the trophoblast cell line HTR8Svneo. Furthermore, trophoblast cells also expressed higher GPR54 and KP protein levels. Treating primary trophoblast cells with KP induced ERK1/2 phosphorylation, while co-treating the cells with a KP antagonist almost completely blocked the activation of ERK1/2 and demonstrated that KP through its cognate GPR54 receptor can activate ERK1/2 in trophoblast cells. KP reduced the migratory capability of trophoblast cells in a scratch-migration assay. Real-time quantitative RT-PCR demonstrated that KP treatment reduced the expression of matrix metalloproteinase 1, 2, 3, 7, 9, 10, 14 and VEGF-A, and increased the expression of tissue inhibitors of metalloproteinases 1 and 3. These results suggest that KP can inhibit first trimester trophoblast cells invasion via inhibition of cell migration and down regulation of the metalloproteinase system and VEGF-A.
  • Loading...
    Thumbnail Image
    Item
    Open Access
    Molecular signatures of prostate stem cells reveal novel signaling pathways and provide insights into prostate cancer
    (Public Library of Science, 2009) Blum, Roy; Gupta, Rashmi; Burger, Patricia E; Ontiveros, Christopher S; Salm, Sarah N; Xiong, Xiaozhong; Kamb, Alexander; Wesche, Holger; Marshall, Lisa; Cutler, Gene
    BACKGROUND: The global gene expression profiles of adult and fetal murine prostate stem cells were determined to define common and unique regulators whose misexpression might play a role in the development of prostate cancer. METHODOLOGY/PRINCIPAL FINDINGS: A distinctive core of transcriptional regulators common to both fetal and adult primitive prostate cells was identified as well as molecules that are exclusive to each population. Elements common to fetal and adult prostate stem cells include expression profiles of Wnt, Shh and other pathways identified in stem cells of other organs, signatures of the aryl-hydrocarbon receptor, and up-regulation of components of the aldehyde dehydrogenase/retinoic acid receptor axis. There is also a significant lipid metabolism signature, marked by overexpression of lipid metabolizing enzymes and the presence of the binding motif for Srebp1. The fetal stem cell population, characterized by more rapid proliferation and self-renewal, expresses regulators of the cell cycle, such as E2f, Nfy, Tead2 and Ap2, at elevated levels, while adult stem cells show a signature in which TGF-β has a prominent role. Finally, comparison of the signatures of primitive prostate cells with previously described profiles of human prostate tumors identified stem cell molecules and pathways with deregulated expression in prostate tumors including chromatin modifiers and the oncogene, Erg. Conclusions/Significance Our data indicate that adult prostate stem or progenitor cells may acquire characteristics of self-renewing primitive fetal prostate cells during oncogenesis and suggest that aberrant activation of components of prostate stem cell pathways may contribute to the development of prostate tumors.
  • Loading...
    Thumbnail Image
    Item
    Open Access
    Molecular signatures of the primitive prostate stem cell niche reveal novel mesenchymal-epithelial signaling pathways
    (Public Library of Science, 2010) Blum, Roy; Gupta, Rashmi; Burger, Patricia E; Ontiveros, Christopher S; Salm, Sarah N; Xiong, Xiaozhong; Kamb, Alexander; Wesche, Holger; Marshall, Lisa; Cutler, Gene
    BACKGROUND: Signals between stem cells and stroma are important in establishing the stem cell niche. However, very little is known about the regulation of any mammalian stem cell niche as pure isolates of stem cells and their adjacent mesenchyme are not readily available. The prostate offers a unique model to study signals between stem cells and their adjacent stroma as in the embryonic prostate stem cell niche, the urogenital sinus mesenchyme is easily separated from the epithelial stem cells. Here we investigate the distinctive molecular signals of these two stem cell compartments in a mammalian system. METHODOLOGY/PRINCIPAL FINDINGS: We isolated fetal murine urogenital sinus epithelium and urogenital sinus mesenchyme and determined their differentially expressed genes. To distinguish transcripts that are shared by other developing epithelial/mesenchymal compartments from those that pertain to the prostate stem cell niche, we also determined the global gene expression of epidermis and dermis of the same embryos. Our analysis indicates that several of the key transcriptional components that are predicted to be active in the embryonic prostate stem cell niche regulate processes such as self-renewal (e.g., E2f and Ap2), lipid metabolism (e.g., Srebp1) and cell migration (e.g., Areb6 and Rreb1). Several of the enriched promoter binding motifs are shared between the prostate epithelial/mesenchymal compartments and their epidermis/dermis counterparts, indicating their likely relevance in epithelial/mesenchymal signaling in primitive cellular compartments. Based on differential gene expression we also defined ligand-receptor interactions that may be part of the molecular interplay of the embryonic prostate stem cell niche. Conclusions/Significance We provide a comprehensive description of the transcriptional program of the major regulators that are likely to control the cellular interactions in the embryonic prostatic stem cell niche, many of which may be common to mammalian niches in general. This study provides a comprehensive source for further studies of mesenchymal/epithelial interactions in the prostate stem cell niche. The elucidation of pathways in the normal primitive niche may provide greater insight into mechanisms subverted during abnormal proliferative and oncogenic processes. Understanding these events may result in the development of specific targeted therapies for prostatic diseases such as benign prostatic hypertrophy and carcinomas.
  • Loading...
    Thumbnail Image
    Item
    Open Access
    Overexpression of Kpnβ1 and Kpnα2 Importin Proteins in Cancer Derives from Deregulated E2F Activity
    (Public Library of Science, 2011) van der Watt, Pauline J; Ngarande, Ellen; Leaner, Virna D
    The Karyopherin superfamily comprises nuclear transport proteins, involved in the shuttling of certain cargo proteins into and out of the nucleus. Karyopherin β1 (Kpnβ1) and Karyopherin α2 (Kpnα2) are importin proteins, which work in concert to transport their cargo into the nucleus. We previously identified increased expression of Kpnβ1 and Kpnα2 in cervical tumours compared to normal epithelium and in transformed cells compared to their normal counterparts. This study therefore aimed to identify the transcription regulatory mechanisms associated with high Kpnβ1 and Kpnα2 levels in cancer cells. Kpnβ1 (−2013 to +100) and Kpnα2 (−1900 to +69) promoter fragments were separately cloned into the reporter vector, pGL3-basic, and luciferase assays revealed both as significantly more active in cancer and transformed cells compared to normal. A series of deletion constructs identified the −637 to −271 Kpnβ1 and −180 to −24 Kpnα2 promoter regions as responsible for the differential promoter activity, and a number of highly conserved E2F binding sites were identified within these regions. Mutation analysis confirmed the requirement of E2F sites for promoter activity, and ChIP analysis confirmed E2F2/Dp1 binding to the Kpnβ1 and Kpnα2 promoters in vivo . Dp1 inhibition resulted in decreased levels of the respective proteins, confirming the role of E2F in the overexpression of Kpnβ1 and Kpnα2 proteins in cancer. E2F activity is known to be deregulated in cervical cancer cells due to the inhibition of its repressor, Rb, by HPV E7. The inhibition of E7 using siRNA resulted in decreased Kpnβ1 and Kpnα2 promoter activities, as did the overexpression of Rb. In conclusion, this study is a first to show that elevated Kpnβ1 and Kpnα2 expression in cancer cells correlates with altered transcriptional regulation associated with deregulated E2F/Rb activities.
  • Loading...
    Thumbnail Image
    Item
    Open Access
    Phenylbutyrate Is Bacteriostatic against Mycobacterium tuberculosis and Regulates the Macrophage Response to Infection, Synergistically with 25-Hydroxy-Vitamin D?
    (Public Library of Science, 2015) Coussens, Anna K; Wilkinson, Robert J; Martineau, Adrian R
    Adjunctive vitamin D treatment for pulmonary tuberculosis enhances resolution of inflammation but has modest effects on bacterial clearance. Sodium 4-phenylbutyrate (PBA) is in clinical use for a range of conditions and has been shown to synergise with vitamin D metabolites to upregulate cathelicidin antimicrobial peptide (CAMP) expression. We investigated whether clinically attainable plasma concentrations of PBA (0.4-4mM) directly affect Mycobacterium tuberculosis (Mtb) growth and human macrophage and PBMC response to infection. We also tested the ability of PBA to enhance the immunomodulatory actions of the vitamin D metabolite 25(OH)D3 during infection and synergistically inhibit intracellular Mtb growth. PBA inhibited Mtb growth in broth with an MIC99 of 1mM, which was reduced to 0.25mM by lowering pH. During human macrophage infection, PBA treatment restricted Mtb uptake, phagocytic receptor expression and intracellular growth in a dose-dependent manner. PBA independently regulated CCL chemokine secretion and induced expression of the antimicrobial LTF(lactoferrin), the anti-inflammatory PROC (protein C) and multiple genes within the NLRP3 inflammasome pathway. PBA co-treatment with 25(OH)D3 synergistically modulated expression of numerous vitamin D-response genes, including CAMP, CYP24A1, CXCL10 andIL-37. This synergistic effect was dependent on MAPK signalling, while the effect of PBA onLTF, PROC and NLRP3 was MAPK-independent. During PBA and 25(OH)D3 co-treatment of human macrophages, in the absence of exogenous proteinase 3 (PR3) to activate cathelicidin,Mtb growth restriction was dominated by the effect of PBA, while the addition of PR3 enhanced growth restriction by 25(OH)D3 and PBA co-treatment. This suggests that PBA augments vitamin D–mediated cathelicidin-dependent Mtb growth restriction by human macrophages and independently induces antimicrobial and anti-inflammatory action. Therefore through both host-directed and bacterial-directed mechanisms PBA and vitamin D may prove an effective combinatorial adjunct therapy for tuberculosis to both resolve immunopathology and enhance bacterial clearance.
  • Loading...
    Thumbnail Image
    Item
    Open Access
    The progestin-only contraceptive medroxyprogesterone acetate, but not norethisterone acetate, enhances HIV-1 Vpr-mediated apoptosis in human CD4+ T cells through the glucocorticoid receptor
    (Public Library of Science, 2013) Tomasicchio, Michele; Avenant, Chanel; Toit, Andrea Du; Ray, Roslyn M; Hapgood, Janet P
    The glucocorticoid receptor (GR) regulates several physiological functions, including immune function and apoptosis. The HIV-1 virus accessory protein, viral protein R (Vpr), can modulate the transcriptional response of the GR. Glucocorticoids (GCs) and Vpr have been reported to induce apoptosis in various cells, including T-cells. We have previously shown that the injectable contraceptive, medroxyprogesterone acetate (MPA) is a partial to full agonist for the GR, unlike norethisterone acetate (NET-A). We investigated the functional cross talk between the GR and Vpr in inducing apoptosis in CD4 + T-cells, in the absence and presence of GCs and these progestins, as well as progesterone. By using flow cytometry, we show that, in contrast to NET-A and progesterone, the synthetic GR ligand dexamethasone (Dex), cortisol and MPA induce apoptosis in primary CD4 + T-cells. Furthermore, the C-terminal part of the Vpr peptide, or HIV-1 pseudovirus, together with Dex or MPA further increased the apoptotic phenotype, unlike NET-A and progesterone. By a combination of Western blotting, PCR and the use of receptor- selective agonists, we provide evidence that the GR and the estrogen receptor are the only steroid receptors expressed in peripheral blood mononuclear cells. These results, together with the findings that RU486, a GR antagonist, prevents Dex-, MPA- and Vpr-mediated apoptosis, provide evidence for the first time that GR agonists or partial agonists increase apoptosis in primary CD4 + T-cells via the GR. We show that apoptotic induction involves differential expression of key apoptotic genes by both Vpr and GCs/MPA. This work suggests that contraceptive doses of MPA but not NET-A or physiological doses of progesterone could potentially accelerate depletion of CD4 + T-cells in a GR-dependent fashion in HIV-1 positive women, thereby contributing to immunodeficiency. The results imply that choice of progestin used in contraception may be critical to susceptibility and progression of diseases such as HIV-1.
  • Loading...
    Thumbnail Image
    Item
    Open Access
    USF-1 is critical for maintaining genome integrity in response to UV-induced DNA photolesions
    (Public Library of Science, 2012) Baron, Yorann; Corre, Sébastien; Mouchet, Nicolas; Vaulont, Sophie; Prince, Sharon; Galibert, Marie-Dominique
    Author Summary UV is responsible for DNA damage and genetic alterations of key players of the Nucleotide Excision Repair (NER) machinery promote the development of UV-induced skin cancers. The NER is the major DNA-repair process involved in the recognition and removal of UV-mediated DNA damage. Different factors participating in this DNA repair are essential, and their mutations are associated with severe genetic diseases such as Cockayne Syndrome and Xeroderma Pigmentosum. Here, we show for the first time that the specific regulation of expression in response to UV of two NER factors CSA and HR23A is required to efficiently remove DNA lesions and to maintain genomic stability. We also implicate the USF-1 transcription factor in the regulation of the expression of these factors using in vitro and in vivo models. This finding is particularly important because UV is the major cause of skin cancers and dramatically compromises patients with highly sensitive genetic diseases.
UCT Libraries logo

Contact us

Jill Claassen

Manager: Scholarly Communication & Publishing

Email: openuct@uct.ac.za

+27 (0)21 650 1263

  • Open Access @ UCT

    • OpenUCT LibGuide
    • Open Access Policy
    • Open Scholarship at UCT
    • OpenUCT FAQs
  • UCT Publishing Platforms

    • UCT Open Access Journals
    • UCT Open Access Monographs
    • UCT Press Open Access Books
    • Zivahub - Open Data UCT
  • Site Usage

    • Cookie settings
    • Privacy policy
    • End User Agreement
    • Send Feedback

DSpace software copyright © 2002-2025 LYRASIS