Browsing by Subject "Gene Regulatory Networks"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemOpen AccessCharacterisation of the global transcriptional response to heat shock and the impact of individual genetic variation(2016) Humburg, Peter; Maugeri, Narelle; Lee, Wanseon; Mohr, Bert; Knight, Julian CAbstract Background The heat shock transcriptional response is essential to effective cellular function under stress. This is a highly heritable trait but the nature and extent of inter-individual variation in heat shock response remains unresolved. Methods We determined global transcription profiles of the heat shock response for a panel of lymphoblastoid cell lines established from 60 founder individuals in the Yoruba HapMap population. We explore the observed differentially expressed gene sets following heat shock, establishing functional annotations, underlying networks and nodal genes involving heat shock factor 1 recruitment. We define a multivariate phenotype for the global transcriptional response to heat shock using partial least squares regression and map this quantitative trait to associated genetic variation in search of the major genomic modulators. Results A comprehensive dataset of differentially expressed genes following heat shock in humans is presented. We identify nodal genes downstream of heat shock factor 1 in this gene set, notably involving ubiquitin C and small ubiquitin-like modifiers together with transcription factors. We dissect a multivariate phenotype for the global heat shock response which reveals distinct clustering of individuals in terms of variance of the heat shock response and involves differential expression of genes involved in DNA replication and cell division in some individuals. We find evidence of genetic associations for this multivariate response phenotype that involves trans effects modulating expression of genes following heat shock, including HSF1 and UBQLN1. Conclusion This study defines gene expression following heat shock for a cohort of individuals, establishing insights into the biology of the heat shock response and hypotheses for how variation in this may be modulated by underlying genetic diversity.
- ItemOpen AccessProjection of gene-protein networks to the functional space of the proteome and its application to analysis of organism complexity(BioMed Central Ltd, 2010) Kanapin, Alexander; Mulder, Nicola; Kuznetsov, VladimirWe consider the problem of biological complexity via a projection of protein-coding genes of complex organisms onto the functional space of the proteome. The latter can be defined as a set of all functions committed by proteins of an organism. Alternative splicing (AS) allows an organism to generate diverse mature RNA transcripts from a single mRNA strand and thus it could be one of the key mechanisms of increasing of functional complexity of the organism's proteome and a driving force of biological evolution. Thus, the projection of transcription units (TU) and alternative splice-variant (SV) forms onto proteome functional space could generate new types of relational networks (e.g. SV-protein function networks, SFN) and lead to discoveries of novel evolutionarily conservative functional modules. Such types of networks might provide new reliable characteristics of organism complexity and a better understanding of the evolutionary integration and plasticity of interconnection of genome-transcriptome-proteome functions. RESULTS: We use the InterPro and UniProt databases to attribute descriptive features (keywords) to protein sequences. UniProt database includes a controlled and curated vocabulary of specific descriptors or keywords. The keywords have been assigned to a protein sequence via conserved domains or via similarity with annotated sequences. Then we consider the unique combinations of keywords as the protein functional labels (FL), which characterize the biological functions of the given protein and construct the contingency tables and graphs providing the projections of transcription units (TU) and alternative splice-variants (SV) onto all FL of the proteome of a given organism. We constructed SFNs for organisms with different evolutionary history and levels of complexity, and performed detailed statistical parameterization of the networks. CONCLUSIONS: The application of the algorithm to organisms with different evolutionary history and level of biological complexity (nematode, fruit fly, vertebrata) reveals that the parameters describing SFN correlate with the complexity of a given organism. Using statistical analysis of the links of the functional networks, we propose new features of evolution of protein function acquisition. We reveal a group of genes and corresponding functions, which could be attributed to an early conservative part of the cellular machinery essential for cell viability and survival. We identify and provide characteristics of functional switches in the polyform group of TUs in different organisms. Based on comparison of mouse and human SFNs, a role of alternative splicing as a necessary source of evolution towards more complex organisms is demonstrated.The entire set of FL across many organisms could be used as a draft of the catalogue of the functional space of the proteome world.
- ItemOpen AccessRNAseq analysis of heart tissue from mice treated with atenolol and isoproterenol reveals a reciprocal transcriptional response(2016) Bergmann, SvenAbstract Background The transcriptional response to many widely used drugs and its modulation by genetic variability is poorly understood. Here we present an analysis of RNAseq profiles from heart tissue of 18 inbred mouse strains treated with the β-blocker atenolol (ATE) and the β-agonist isoproterenol (ISO). Results Differential expression analyses revealed a large set of genes responding to ISO (n = 1770 at FDR = 0.0001) and a comparatively small one responding to ATE (n = 23 at FDR = 0.0001). At a less stringent definition of differential expression, the transcriptional responses to these two antagonistic drugs are reciprocal for many genes, with an overall anti-correlation of r = −0.3. This trend is also observed at the level of most individual strains even though the power to detect differential expression is significantly reduced. The inversely expressed gene sets are enriched with genes annotated for heart-related functions. Modular analysis revealed gene sets that exhibit coherent transcription profiles across some strains and/or treatments. Correlations between these modules and a broad spectrum of cardiovascular traits are stronger than expected by chance. This provides evidence for the overall importance of transcriptional regulation for these organismal responses and explicits links between co-expressed genes and the traits they are associated with. Gene set enrichment analysis of differentially expressed groups of genes pointed to pathways related to heart development and functionality. Conclusions Our study provides new insights into the transcriptional response of the heart to perturbations of the β-adrenergic system, implicating several new genes that had not been associated to this system previously.