Browsing by Subject "Competitive Behavior"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemOpen AccessIs multiple nest building an adequate strategy to cope with inter-species nest usurpation?(2016) Sumasgutner, Petra; Millán, Juan; CURTIS, ODETTE; Koelsag, Ann; AMAR, ARJUNAbstract Background Black sparrowhawks (Accipiter melanoleucus) recently colonised the Cape Peninsula, South Africa, where the species faces competition for their nest sites from Egyptian geese (Alopochen aegyptiaca) which frequently usurp black sparrowhawk nests. In this paper, we test the hypothesis that multiple nest building by black sparrowhawks is a strategy to cope with this competitor, based on a 14-year long term data set. Results Two main results support the hypothesis: first, the numbers of intact nests per breeding season in black sparrowhawk territories increased as levels of geese interactions increased, specifically when usurpation occurred. Usurpation occurred significantly more often at nests later in the season, and may provide a further explanation for the advancement of the black sparrowhawk breeding season towards earlier breeding attempts which results in an overall extension of the breeding period (over 9 months) that has been found in our study population. Second, nest usurpation had a negative impact on black sparrowhawks’ reproductive performance at the ‘nest’ level, but not at the ‘territory’ level when multiple nests were available within the same breeding season, suggesting that this strategy was effective for dealing with this competitor. However, our results do not rule out long term negative consequences of these interactions, for example, reduced adult survival rates or reduced lifetime reproductive success, due to the higher energy demand required to build several nests each breeding season. Conclusions Our results suggest that black sparrowhawks avoid direct conflict with this large and aggressive competitor and instead choose the passive strategy in allocating more resources to multiple nest building. Our research further highlights the importance of behavioural plasticity, which might be especially important for city-dwelling species in the face of global urbanisation.
- ItemOpen AccessPurely competitive evolutionary dynamics for games(2012) Veller, Carl; Rajpaul, VineshWe introduce and analyze a purely competitive dynamics for the evolution of an infinite population subject to a 3-strategy game. We argue that this dynamics represents a characterization of how certain systems, both natural and artificial, are governed. In each period, the population is randomly sorted into pairs, which engage in a once-off play of the game; the probability that a member propagates its type to its offspring is proportional only to its payoff within the pair. We show that if a type is dominant (obtains higher payoffs in games with both other types), its 'pure' population state, comprising only members of that type, is globally attracting. If there is no dominant type, there is an unstable 'mixed' fixed point; the population state eventually oscillates between the three near-pure states. We then allow for mutations, where offspring have a non-zero probability of randomly changing their type. In this case, the existence of a dominant type renders a point near its pure state globally attracting. If no dominant type exists, a supercritical Hopf bifurcation occurs at the unique mixed fixed point, and above a critical (typically low) mutation rate, this fixed point becomes globally attracting: the implication is that even very low mutation rates can stabilize a system that would, in the absence of mutations, be unstable.