• English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
  • Communities & Collections
  • Browse OpenUCT
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
  1. Home
  2. Browse by Subject

Browsing by Subject "Cercopithecus aethiops"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Open Access
    Critical Interaction of Actuator Domain Residues Arginine 174, Isoleucine 188, and Lysine 205 with Modulatory Nucleotide in Sarcoplasmic Reticulum Ca 2+ -ATPase
    (2008) Clausen, Johannes D; McIntosh, David B; Woolley, David G; Andersen, Jens Peter
    ATP plays dual roles in the reaction cycle of the sarcoplasmic reticulum Ca2+-ATPase by acting as the phosphorylating substrate as well as in nonphosphorylating (modulatory) modes accelerating conformational transitions of the enzyme cycle. Here we have examined the involvement of actuator domain residues Arg174, Ile188, Lys204, and Lys205 by mutagenesis. Alanine mutations to these residues had little effect on the interaction of the Ca2E1 state with nucleotide or on the HnE 2 to Ca2E1 transition of the dephosphoenzyme. The phosphoenzyme processing steps, Ca2E1P to E2P and E2P dephosphorylation, and their stimulation by MgATP/ATP were markedly affected by mutations to Arg174, Ile188, and Lys205. Replacement of Ile188 with alanine abolished nucleotide modulation of dephosphorylation but not the modulation of the Ca2E1P to E2P transition. Mutation to Arg174 interfered with nucleotide modulation of either of the phosphoenzyme processing steps, indicating a significant overlap between the modulatory nucleotide-binding sites involved. Mutation to Lys205 enhanced the rates of the phosphoenzyme processing steps in the absence of nucleotide and disrupted the nucleotide modulation of the Ca2E1P to E2P transition. Remarkably, the mutants with alterations to Lys205 showed an anomalous inhibition by ATP of the dephosphorylation, and in the alanine mutant the affinity for the inhibition by ATP was indistinguishable from that for stimulation by ATP of the wild type. Hence, the actuator domain is an important player in the function of ATP as modulator of phosphoenzyme processing, with Arg174, Ile188, and Lys205 all being critically involved, although in different ways. The data support a variable site model for the modulatory effects with the nucleotide binding somewhat differently in each of the conformational states occurring during the transport cycle.
  • Loading...
    Thumbnail Image
    Item
    Open Access
    Glutamate 301 of the mouse gonadotropin-releasing hormone receptor confers specificity for arginine 8 of mammalian gonadotropin-releasing hormone
    (1994) Flanagan, C A; Becker, I I; Davidson, J S; Wakefield, I K; Zhou, W; Sealfon, S C; Millar, R P
    The Arg residue at position 8 of mammalian GnRH is necessary for high affinity binding to mammalian GnRH receptors. This requirement has been postulated to derive from an electrostatic interaction of Arg8 with a negatively charged receptor residue. In order to identify such a residue, 8 conserved acidic residues of the mouse GnRH receptor were mutated to isosteric Asn or Gln. Mutant receptors were tested for decreased preference for Arg8-containing ligands by ligand binding and inositol phosphate production. One of the mutants, in which the Glu301 residue was mutated to Gln, exhibited a 56-fold decrease in apparent affinity for mammalian GnRH. The mutant receptor also exhibited decreased affinity for [Lys8]GnRH, but its affinity for [Gln8]GnRH was unchanged compared with the wild type receptor. The apparent affinity of the mutant receptor for the acidic analogue, [Glu8]GnRH, was increased more than 10-fold. The mutant receptor did not, therefore, distinguish mammalian GnRH from analogues with amino acid substitutions at position 8 as effectively as the wild type receptor. This loss of discrimination was specific for the residue at position 8, because the mutant receptor did distinguish mammalian GnRH from analogues with favorable substitutions at positions 5, 6, and 7. These findings show that Glu301 of the GnRH receptor plays a role in receptor recognition of Arg8 in the ligand and are consistent with an electrostatic interaction between these 2 residues.
  • Loading...
    Thumbnail Image
    Item
    Open Access
    UV-mediated Regulation of the anti-senescence factor Tbx2
    (2008) Abrahams, Amaal; Mowla, Shaheen; PARKER, M Iqbal; Goding, Colin R; Prince, Sharon
    Several lines of evidence have implicated members of the developmentally important T-box gene family in cell cycle regulation and in cancer. Importantly, the highly related T-box factors Tbx2 and Tbx3 can suppress senescence through repressing the cyclin-dependent kinase inhibitors p19(ARF) and p21(WAF1/CIP1/SDII). Furthermore, Tbx2 is up-regulated in several cancers, including melanomas where it was shown to function as an anti-senescence factor, suggesting that this may be one of the mechanisms by which T-box proteins contribute to the oncogenic process. However, very little is known about whether Tbx2 is regulated by p21-mediated stress-induced senescence signaling pathways. In this study, using the MCF-7 breast cancer cell line known to overexpress Tbx2, we show that in response to stress induced by ultraviolet irradiation the Tbx2 protein is specifically phosphorylated by the p38 mitogen-activated protein kinase. Using site-directed mutagenesis and in vitro kinase assays, we have identified serine residues 336, 623, and 675 in the Tbx2 protein as the p38 target sites and show that these sites are phosphorylated in vivo. Importantly, we show by Western blotting, immunofluorescence, and reporter assays that this phosphorylation leads to increased Tbx2 protein levels, predominant nuclear localization of the protein, and an increase in the ability of Tbx2 to repress the p21(WAF1/CIP1/SDII) promoter. These results show for the first time that the ability of Tbx2 to repress the p21 gene is enhanced in response to a stress-induced senescence pathway, which leads to a better understanding of the regulation of the anti-senescence function of Tbx2.
UCT Libraries logo

Contact us

Jill Claassen

Manager: Scholarly Communication & Publishing

Email: openuct@uct.ac.za

+27 (0)21 650 1263

  • Open Access @ UCT

    • OpenUCT LibGuide
    • Open Access Policy
    • Open Scholarship at UCT
    • OpenUCT FAQs
  • UCT Publishing Platforms

    • UCT Open Access Journals
    • UCT Open Access Monographs
    • UCT Press Open Access Books
    • Zivahub - Open Data UCT
  • Site Usage

    • Cookie settings
    • Privacy policy
    • End User Agreement
    • Send Feedback

DSpace software copyright © 2002-2025 LYRASIS