Browsing by Subject "Catalytic Domain"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemOpen AccessAsparagine 706 and Glutamate 183 at the Catalytic Site of Sarcoplasmic Reticulum Ca 2+ -ATPase Play Critical but Distinct Roles in E 2 States(2006) Clausen, Johannes D; McIntosh, David B; Woolley, David G; Anthonisen, Anne Nyholm; Vilsen, Bente; Andersen, Jens PeterMutants with alteration to Asn(706) of the highly conserved (701)TGDGVND(707) motif in domain P of sarcoplasmic reticulum Ca(2+)-ATPase were analyzed for changes in transport cycle kinetics and binding of the inhibitors vanadate, BeF, AlF, and MgF. The fluorides likely mimic the phosphoryl group/P(i) in the respective ground, transition, and product states of phosphoenzyme hydrolysis (Danko, S., Yamasaki, K., Daiho, T., and Suzuki, H. (2004) J. Biol. Chem. 279, 14991-14998). Binding of BeF, AlF, and MgF was also studied for mutant Glu(183) --> Ala, where the glutamate of the (181)TGES(184) motif in domain A is replaced. Mutations of Asn(706) and Glu(183) have in common that they dramatically impede the function of the enzyme in E2 states, but have little effect in E1. Contrary to the Glu(183) mutant, in which E2P slowly accumulates (Clausen, J. D., Vilsen, B., McIntosh, D. B., Einholm, A. P., and Andersen, J. P. (2004) Proc. Natl. Acad. Sci. U. S. A. 101, 2776-2781), E2P formation was not detectable with the Asn(706) mutants. Differential sensitivities of the mutants to inhibition by AlF, MgF, and BeF made it possible to distinguish different roles of Asn(706) and Glu(183). Hence, Asn(706) is less important than Glu(183) for gaining the transition state during E2P hydrolysis but plays critical roles in stabilization of E2P ground and E2.P(i) product states and in the major conformational changes associated with the Ca(2)E1P --> E2P and E2 --> Ca(2)E1 transitions, which seem to be facilitated by interaction of Asn(706) with domain A.
- ItemOpen AccessThapsigargin and Dimethyl Sulfoxide Activate Medium P i ↔ HOH Oxygen Exchange Catalyzed by Sarcoplasmic Reticulum Ca 2+ -ATPase(2001) Seekoe, Tshepo; Peall, Susan; McIntosh, David BThapsigargin is a potent inhibitor of sarcoplasmic reticulum Ca(2+)-ATPase. It binds the Ca(2+)-free E2 conformation in the picomolar range, supposedly resulting in a largely catalytically inactive species. We now find that thapsigargin has little effect on medium P(i) <--> HOH oxygen exchange and that this activity is greatly stimulated (up to 30-fold) in the presence of 30% (v/v) Me(2)SO. Assuming a simple two-step mechanism, we have evaluated the effect of thapsigargin and Me(2)SO on the four rate constants governing the reaction of P(i) with Ca(2+)-ATPase. The principal effect of thapsigargin alone is to stimulate EP hydrolysis (k(-2)), whereas that of Me(2)SO is to greatly retard P(i) dissociation (k(-1)), accounting for its well known effect on increasing the apparent affinity for P(i). These effects persist when the agents are used in combination and substantially account for the activated oxygen exchange (v(exchange) = k(-2)[EP]). Kinetic simulations show that the overall rate constant for the formation of EP is very fast (approximately 300 s(-1)) when the exchange is maximal. Thapsigargin greatly stabilizes Ca(2+)-ATPase against denaturation in detergent in the absence of Ca(2+), as revealed by glutaraldehyde cross-linking, suggesting that the membrane helices lock together. It seems that the reactions at the phosphorylation site, associated with the activated exchange reaction, are occurring without much movement of the transport site helices, and we suggest that they may be associated solely with an occluded H+ state.