• English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
  • Communities & Collections
  • Browse OpenUCT
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
  1. Home
  2. Browse by Subject

Browsing by Subject "Calcium Channels"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Open Access
    Comparative effects of calcium channel antagonism and beta-1 selective blockade on exercise performance in physically active hypertensive patients
    (1997) Selvey, Christine Enid; Derman, Wayne
    The current recommendations by the American Heart Association for health promotion are that all persons should partake in regular physical activity in order to reduce the risk of cardiovascular disease. Regular physical exercise reduces blood pressure and is an important component of the management of hypertension. It is therefore important that patients with hypertension participate in habitual physical exercise. Many hypertensive patients who exercise will require anti-hypertensive medication. However, some antihypertensive agents cause fatigue during exercise. In order for patients to gain the full benefits of an active lifestyle, it is important that the prescribed antihypertensive agent does not prevent them performing and enjoying sustained exercise. It has been well documented that β-blockers cause premature fatigue during physical exercise. The effects on exercise performance of other first line antihypertensive medications, such as calcium channel antagonists have not been extensively investigated. In particular, the effects of these agents on prolonged submaximal exercise endurance have not been well studied. The object of this thesis was to compare the effects of isradipine, a dihydropyridine calcium channel antagonist, to those of atenolol, a β₁-selective antagonist, on maximal and submaximal exercise performance and on short duration high-intensity exercise in physically active hypertensive patients. The study design was a crossover trial where drug treatments were double blinded and randomised. Physically active volunteers with mild to moderate hypertension were recruited. 11 subjects performed i) progressive exercise to exhaustion for determination of maximal oxygen consumption (VO₂max), maximal work load and cardiorespiratory responses to maximal exercise, ii) prolonged submaximal exercise for determination of exercise endurance, cardiorespiratory responses and ratings of perceived exertion (APE), and iii) short duration, high intensity exercise consisting of a 30 second maximal exercise test (Wingate test) to determine skeletal muscle power output, following 4 weeks ingestion of isradipine (2.5mg bd), atenolol (50mg bd) or placebo. Diastolic blood pressure at rest was reduced by both atenolol and isradipine, but was lowered to a greater extent by atenolol (83.3 vs 89.0 vs 96.1 mmHg, atenolol vs isradipine vs placebo, p<.0005). Systolic blood pressure at rest tended to be similarly reduced by both agents, but was significantly reduced during maximal and submaximal exercise by atenolol only (p<.001, atenolol vs isradipine, placebo). Heart rate at rest and during maximal and submaximal exercise was decreased by atenolol only (p<.0005, atenolol vs isradipine, placebo). Maximal exercise performance was reduced after atenolol ingestion compared to placebo but not after isradipine ingestion. Peak workload achieved during the maximal exercise test was decreased after atenolol but unchanged after isradipine ingestion (214 vs 243 W, atenolol vs placebo, p<.01). Similarly, VO₂max was reduced after atenolol compared to placebo but was unchanged after isradipine ingestion (33.6 vs 36.4, 33.6 vs 36.1 mlO₂/kg/min, atenolol vs placebo, atenolol vs isradipine, p<.05). Both atenolol and isradipine ingestion reduced submaximal endurance time compared to placebo (27.8 vs 46.4, 34.4 vs 46.4 min, atenolol vs placebo, isradipine vs placebo, p<.005), and increased rating of perceived exertion (APE) after 30 min of submaximal exercise (p<.05). Submaximal oxygen consumption (VO₂), ventilation, respiratory exchange ratio (REA) and blood lactate, glucose and free fatty acid concentrations were not altered after the ingestion of either agent. Neither agent influenced peak skeletal muscle power, total work done, or rate of fatigue during the Wingate test compared to placebo. The results of these studies indicate that impaired performance and increased RPE during submaximal exercise after ingestion of either atenolol or isradipine is not due to alterations of ventilation, VO₂, RER, or blood lactate, glucose and free fatty acid concentrations during prolonged submaximal exercise. Similarly, reduced submaximal exercise performance after atenolol or isradipine ingestion is not due to factors which would also limit the ability of skeletal muscle to perform short duration, high intensity exercise before a bout of prolonged exercise. This study demonstrates that prolonged submaximal exercise testing can reveal an impairment in exercise performance after ingestion of antihypertensive medication which is not evident during maximal exercise testing. This finding is important as prolonged submaximal exercise is the form of exercise which most hypertensive patients actually perform. Further research is required on the effects of anti-hypertensive medications on submaximal exercise performance before firm recommendations can be made regarding medications most suitable for the physically active hypertensive patient. The results of these and other studies indicate that it is not yet possible to make claims that the calcium channel antagonist agents are without effect on physical exercise performance in physically active hypertensive patients.
  • Loading...
    Thumbnail Image
    Item
    Open Access
    The pharmacological modification of reperfusion injury with particular reference to calcium fluxes in the isolated rat heart
    (1994) Du Toit, Eugene Francois; Opie, Lionel H
    Myocardial reperfusion injury is thought to be caused by reperfusion induced i) cytosolic Ca²⁺ overload and/or, ii) the formation of oxygen derived freeradicals. At the start of this study, data implicating cytosolic Ca²⁺ overload in the genesis of reversible reperfusion injury were inconclusive. Although several workers have approached this problem by measurements of cytosolic calcium ions, it was my aim to examine the potential sources of such calcium overload. The experiments reported in this thesis were therefore designed to examine the role of altered intracellular and transsarcolemmal Ca²⁺ fluxes in the genesis of reperfusion stunning and arrhythmias. The study was also aimed at elucidating the possible sources and entry pathways contributing to this proposed cytosolic Ca²⁺ overload. In order to investigate the possible role of altered reperfusion Ca²⁺ fluxes in reperfusion injury, we exposed the isolated working, and Langendorff perfused rat heart model to ischaemia and reperfusion to induce reperfusion stunning and arrhythmias. Hearts were pre-treated (before ischaemia) or reperfused with pharmacological compounds, or by interventions known to enhance or inhibit intracellular or transsarcolemmal Ca²⁺ fluxes. The severity of reperfusion stunning (mechanical dysfunction) was measured by reperfusion aortic output, coronary flow and left ventricular pressure. The incidence of reperfusion ventricular arrhythmias was measured by the incidence of ventricular tachycardia and/ or fibrillation. In selected studies, the metabolic status of hearts was evaluated using biochemical assays performed on myocardial tissue samples. Data obtained in these studies indicate that increased Ca²⁺ fluxes through sarcolemmal L-type Ca²⁺ channels during early reperfusion exacerbate stunning, while inhibition of these fluxes with the Ca²⁺ antagonist drug nisoldipine or by Mg²⁺ or Mn²⁺ improve reperfusion function. These data also suggest that although interventions increasing Ca²⁺ fluxes early in reperfusion exacerbate reperfusion stunning, these same interventions improve reperfusion function when performed later. The data also indicate that Ca²⁺ may enter the myocyte indirectly via activation of the Na⁺/H⁺ and Na⁺/Ca²⁺ exchanger during reperfusion. Inhibition of Na⁺/H⁺ exchange activity by HOE 694 during reperfusion attenuated reperfusion stunning and arrhythmias. Both activation of the Na⁺/H⁺ (and Na⁺/Ca²⁺) exchanger and Ca²⁺ influx via the Ca²⁺ channel could contribute to reperfusion induced Ca²⁺ overload and subsequent injury. The study also showed that altered intracellular Ca²⁺ oscillations play a role in reperfusion stunning and arrhythmias as shown by the use of the SR Ca²⁺ release channel blocker, ryanodine. Inhibition of the sarcoplasmic reticulum Ca²⁺ A TP-ase pump by two novel inhibitors, thapsigargin and cyclopiazonic acid, during ischaemia and early reperfusion improved reperfusion function and reduced the incidence of ventricular arrhythmias. function when unphysiologically high concentrations of the peptide were infused into the heart during reperfusion. Taken together, these data suggest that: 1) Ca²⁺ fluxes during early reperfusion (intracellular and transsarcolemmal) play a role in reperfusion injury, 2) that both the Ca²⁺ channel and Na⁺/H⁺ exchange activity contribute to reperfusion injury by possibly contributing to cytosolic Ca²⁺ overload and that, 3) altered intracellular Ca²⁺ oscillations through the SR play a role in both stunning and arrhythmias. Thus the proposal is that modulation of Ca²⁺ fluxes through either the sarcolemma or the sarcoplasmic reticulum, lessen reperfusion injury (stunning and arrhythmias). Although these data do not provide direct evidence of reperfusion Ca²⁺ overload, they support the concept that calcium ions play a role in the genesis of reversible reperfusion injury.
UCT Libraries logo

Contact us

Jill Claassen

Manager: Scholarly Communication & Publishing

Email: openuct@uct.ac.za

+27 (0)21 650 1263

  • Open Access @ UCT

    • OpenUCT LibGuide
    • Open Access Policy
    • Open Scholarship at UCT
    • OpenUCT FAQs
  • UCT Publishing Platforms

    • UCT Open Access Journals
    • UCT Open Access Monographs
    • UCT Press Open Access Books
    • Zivahub - Open Data UCT
  • Site Usage

    • Cookie settings
    • Privacy policy
    • End User Agreement
    • Send Feedback

DSpace software copyright © 2002-2025 LYRASIS