Browsing by Subject "Bacteroides fragilis"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemOpen AccessAn AraC/XylS family transcriptional regulator homologue from Bacteroides fragilis is associated with cell survival following DNA damage(Oxford University Press, 2008) Casanueva, Ana I; Paul, Lynthia; Patrick, Sheila; Abratt, Valerie RA putative transcriptional regulator of the AraC/XylS family was identified in a genomic genebank of Bacteroides fragilis Bf-1, which partially relieved the sensitivity of Escherichia coli DNA repair mutants to the DNA-damaging agents, metronidazole and mitomycin C. A homologue of this gene with the same phenotype was identified as BF638R3281 in B. fragilis 638R. Transcription of BF638R3281 was constitutive with respect to exposure to sublethal doses of metronidazole. BF638R3281 was interrupted by single cross-over gene-specific insertion mutation, and the gene disruption was confirmed by PCR and DNAsequencing analysis. The mutant grew more slowly than the wild type, and the mutation rendered B. fragilis more sensitive to metronidazole and mitomycin C. This indicates that the BF638R3281 gene product plays a role in the survival of B. fragilis following DNA damage by these agents.
- ItemOpen AccessProteolysis of the type III glutamine synthetase from Bacteroides fragilis causes expedient crystal-packing rearrangements(International Union of Crystallography, 2011) Rooyen, Jason van; Belrhali, Hassan; Abratt, Valarie; Sewel, Trevor BThis work details the intentional modifications that led to the first structure of a type III glutamine synthetase enzyme (GSIII). This approach followed the serendipitous discovery of digestion caused by an extracellular protease from a contaminating bacterium, Pseudomonas fluorescens. The protease only cleaves the GSIII protein at a single site, leaving the oligomer intact but allowing the protein to crystallize in a different space group. This transition from space group P1 to space group C2221 is accompanied by improved growth characteristics, more reproducible diffraction and enhanced mechanical stability. The crystallographic analyses presented here provide the structural basis of the altered molecular packing in the full-length and digested crystal forms and suggest modifications for future structural studies.
- ItemOpen AccessProteolysis of the type III glutamine synthetase from Bacteroides fragilis causes expedient crystal-packing rearrangements(International Union of Crystallography, 2011) van Rooyen, Jason; Belrhali, Hassan; Abratt, Valarie; Sewella, Trevor BThis work details the intentional modifications that led to the first structure of a type III glutamine synthetase enzyme (GSIII). This approach followed the serendipitous discovery of digestion caused by an extracellular protease from a contaminating bacterium, Pseudomonas fluorescens. The protease only cleaves the GSIII protein at a single site, leaving the oligomer intact but allowing the protein to crystallize in a different space group. This transition from space group P1 to space group C2221 is accompanied by improved growth characteristics, more reproducible diffraction and enhanced mechanical stability. The crystallographic analyses presented here provide the structural basis of the altered molecular packing in the full-length and digested crystal forms and suggest modifications for future structural studies.
- ItemRestrictedThree-dimensional structure of a type III glutamine synthetase by single-particle reconstruction(Elsevier, 2006) van Rooyen, Jason M; Abratt, Valerie R; Sewell, Trevor BGlnN, the type III glutamine synthetase (GSIII) from the medically important, anaerobic, opportunistic pathogen Bacteroides fragilis, has 82.8 kDa subunits that share only 9% sequence identity with the type I glutamine synthetases (GSI), the only family for which a structure is known. Active GlnN was found predominantly in a single peak that eluted from a calibrated gel-filtration chromatography column at a position equaivalent to 0.86(±0.08) MDa. Negative-stain electron microscopy enabled the identification of double-ringed particles and single hexameric rings (“pinwheels”) resulting from partial staining. A 2D average of these pinwheels showed marked similarity to the corresponding structures found in preparations of GSI, except that the arms of the subunits were 40% longer. Reconstructions from particles embedded in vitreous ice showed that GlnN has a double-ringed, dodecameric structure with a 6-fold dihedral space group (D6) symmetry and dimensions of 17.0 nm parallel with the 6-fold axis and 18.3 nm parallel with the 2-fold axes. The structures, combined with a sequence alignment based on structural principles, showed how many aspects of the structure of GSI, and most notably the α/β barrel fold active site were preserved. There was evidence for the presence of this structure in the reconstructed volume, thus, identifying the indentations between the pinwheel spokes as putative active sites and suggesting conservation of the overall molecular geometry found in GSI despite their low level of global homology. Furthermore, docking of GSI into the reconstruction left sufficient plausibly located unoccupied density to account for the additional residues in GSIII, thus validating the structure.