• English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
  • Communities & Collections
  • Browse OpenUCT
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
  1. Home
  2. Browse by Subject

Browsing by Subject "Amorphous silicon"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Restricted
    Hot-wire synthesis of Si nanoparticles.
    (Elsevier, 2008) Scriba, M R; Arendse, C; Härting, M; Britton, D T
    The viability of producing silicon nanoparticles using the HWCVD process is investigated. A system is assembled and particles are produced from silane at pressures between 0.2 and 48 mbar, with hydrogen dilutions of 0–80%, at a total flow rate of 50 sccm and with a tungsten filament maintained at 1650 °C. The as-prepared powder varies in colour from yellowish to dark brown and is deposited on all surfaces inside the reaction chamber. The material is a highly porous agglomeration of nanoparticles of primary size in the order of 40 nm, with a narrow size distribution. The nanoparticles produced are mostly amorphous, hydrogenated and have a partially oxidised surface.
UCT Libraries logo

Contact us

Jill Claassen

Manager: Scholarly Communication & Publishing

Email: openuct@uct.ac.za

+27 (0)21 650 1263

  • Open Access @ UCT

    • OpenUCT LibGuide
    • Open Access Policy
    • Open Scholarship at UCT
    • OpenUCT FAQs
  • UCT Publishing Platforms

    • UCT Open Access Journals
    • UCT Open Access Monographs
    • UCT Press Open Access Books
    • Zivahub - Open Data UCT
  • Site Usage

    • Cookie settings
    • Privacy policy
    • End User Agreement
    • Send Feedback

DSpace software copyright © 2002-2025 LYRASIS