• English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
  • Communities & Collections
  • Browse OpenUCT
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
  1. Home
  2. Browse by Subject

Browsing by Subject "Acceleration waves - Mathematical models"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Open Access
    Acceleration waves in constrained thermoelastic materials
    (1989) Bleach, Gordon Phillip; Reddy, Daya
    We study the propagation and growth of acceleration waves in isotropic thermoelastic media subject to a broad class of thermomechanical constraints. The work is based on an existing thermodynamic theory of constrained thermoelastic materials presented by Reddy (1984) for both definite and non- conductors, but we differ by adopting a new definition of a constrained non-conductor and by investigating the consequences of isotropy. The set of constraints considered is not arbitrary but is large enough to include most constraints commonly found in practice. We also extend Reddy's (1984) work by including consideration of sets of constraints for which a set of vectors associated with the constraints is linearly dependent. These vectors play a significant role in the propagation conditions and in the growth equations described below. Propagation conditions (of Fresnel-Hadamard type) are derived for both homothermal and homentropic waves, and solutions for longitudinal and transverse principal waves are discussed. The derivations involve the determination of jumps in the time derivative of constraint multipliers which are required in the solution of the corresponding growth equations, and it is found that these multipliers cannot be separately determined if the set of constraint vectors mentioned above is linearly dependent. This difficulty forces us to restrict the constraint set for which the growth equations for homothermal and homentropic waves can be derived. The growth of plane, cylindrical and spherical waves is considered and solutions are discussed, concentrating on the influence of the constraints on the results.
UCT Libraries logo

Contact us

Jill Claassen

Manager: Scholarly Communication & Publishing

Email: openuct@uct.ac.za

+27 (0)21 650 1263

  • Open Access @ UCT

    • OpenUCT LibGuide
    • Open Access Policy
    • Open Scholarship at UCT
    • OpenUCT FAQs
  • UCT Publishing Platforms

    • UCT Open Access Journals
    • UCT Open Access Monographs
    • UCT Press Open Access Books
    • Zivahub - Open Data UCT
  • Site Usage

    • Cookie settings
    • Privacy policy
    • End User Agreement
    • Send Feedback

DSpace software copyright © 2002-2025 LYRASIS