• English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
  • Communities & Collections
  • Browse OpenUCT
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
  1. Home
  2. Browse by Author

Browsing by Author "van Heerden, Johan"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Open Access
    A framework for the informed normalization of printed microarrays
    (Academy of Science of South Africa, 2007) van Heerden, Johan; Walford, Sally-Ann; Shen, Arthur; Illing, Nicola
    Microarray technology has become an essential part of contemporary molecular biological research. An aspect central to any microarray experiment is that of normalization, a form of data processing directed at removing technical noise while preserving biological meaning, thereby allowing for more accurate interpretations of data. The statistics underlying many normalization methods can appear overwhelming to microarray newcomers, a situation which is further compounded by a lack of accessible, non-statistical descriptions of common approaches to normalization. Normalization strategies significantly affect the analytical outcome of a microarray experiment, and consequently it is important that the statistical assumptions underlying normalization algorithms are understood and met before researchers embark upon the processing of raw microarray data. Many of these assumptions pertain only to whole-genome arrays, and are not valid for custom or directed microarrays. A thorough diagnostic evaluation of the nature and extent to which technical noise affects individual arrays is paramount to the success of any chosen normalization strategy. Here we suggest an approach to normalization based on extensive stepwise exploration and diagnostic assessment of data prior to, and after, normalization. Common data visualization and diagnostic approaches are highlighted, followed by descriptions of popular normalization methods, and the underlying assumptions they are based on, within the context of removing general technical artefacts associated with microarray data.
  • Loading...
    Thumbnail Image
    Item
    Open Access
    Parallel changes in gene expression in peripheral blood mononuclear cells and the brain after maternal separation in the mouse
    (BioMed Central Ltd, 2009) van Heerden, Johan; Conesa, Ana; Stein, Dan J; Montaner, David; Russell, Vivienne; Illing, Nicola
    BACKGROUND: The functional integration of the neuro-, endocrine- and immune-systems suggests that the transcriptome of white blood cells may reflect neuropsychiatric states, and be used as a non-invasive diagnostic indicator. We used a mouse maternal separation model, a paradigm of early adversity, to test the hypothesis that transcriptional changes in peripheral blood mononuclear cells (PBMCs) are paralleled by specific gene expression changes in prefrontal cortex (PFC), hippocampus (Hic) and hypothalamus (Hyp). Furthermore, we evaluated whether gene expression profiles of PBMCs could be used to predict the separation status of individual animals.FINDINGS:Microarray gene expression profiles of all three brain regions provided substantial evidence of stress-related neural differences between maternally separated and control animals. For example, changes in expression of genes involved in the glutamatergic and GABAergic systems were identified in the PFC and Hic, supporting a stress-related hyperglutamatergic state within the separated group. The expression of 50 genes selected from the PBMC microarray data provided sufficient information to predict treatment classes with 95% accuracy. Importantly, stress-related transcriptome differences in PBMC populations were paralleled by stress-related gene expression changes in CNS target tissues. CONCLUSION: These results confirm that the transcriptional profiles of peripheral immune tissues occur in parallel to changes in the brain and contain sufficient information for the efficient diagnostic prediction of stress-related neural states in mice. Future studies will need to evaluate the relevance of the predictor set of 50 genes within clinical settings, specifically within a context of stress-related disorders.
UCT Libraries logo

Contact us

Jill Claassen

Manager: Scholarly Communication & Publishing

Email: openuct@uct.ac.za

+27 (0)21 650 1263

  • Open Access @ UCT

    • OpenUCT LibGuide
    • Open Access Policy
    • Open Scholarship at UCT
    • OpenUCT FAQs
  • UCT Publishing Platforms

    • UCT Open Access Journals
    • UCT Open Access Monographs
    • UCT Press Open Access Books
    • Zivahub - Open Data UCT
  • Site Usage

    • Cookie settings
    • Privacy policy
    • End User Agreement
    • Send Feedback

DSpace software copyright © 2002-2025 LYRASIS