Browsing by Author "Van Doorslaer, Koenraad"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemOpen AccessThe ancient evolutionary history of polyomaviruses(Public Library of Science, 2016) Buck, Christopher B; Van Doorslaer, Koenraad; Peretti, Alberto; Geoghegan, Eileen M; Tisza, Michael J; An, Ping; Katz, Joshua P; Pipas, James M; McBride, Alison A; Camus, Alvin C; McDermott, Alexa J; Dill, Jennifer A; Delwart, Eric; Ng, Terry F F; Farkas, Kata; Austin, Charlotte; Kraberger, Simona; Davison, William; Pastrana, Diana V; Varsani, ArvindAuthor Summary: Polyomaviruses are a family of DNA-based viruses that are known to infect various terrestrial vertebrates, including humans. In this report, we describe our discovery of highly divergent polyomaviruses associated with various marine fish. Searches of public deep sequencing databases unexpectedly revealed the existence of polyomavirus-like sequences in scorpion and spider datasets. Our analysis of these new sequences suggests that polyomaviruses have slowly co-evolved with individual host animal lineages through an established mechanism known as intrahost divergence. The proposed model is similar to the mechanisms through with other DNA viruses, such as papillomaviruses, are thought to have evolved. Our analysis also suggests that distantly related polyomaviruses sometimes recombine to produce new chimeric lineages. We propose a possible taxonomic scheme that can account for these inferred ancient recombination events.
- ItemOpen AccessNew World Cactaceae Plants Harbor Diverse Geminiviruses(2021-04-16) Fontenele, Rafaela S; Salywon, Andrew M; Majure, Lucas C; Cobb, Ilaria N; Bhaskara, Amulya; Avalos-Calleros, Jesús A; Argüello-Astorga, Gerardo R; Schmidlin, Kara; Khalifeh, Anthony; Smith, Kendal; Schreck, Joshua; Lund, Michael C; Köhler, Matias; Wojciechowski, Martin F; Hodgson, Wendy C; Puente-Martinez, Raul; Van Doorslaer, Koenraad; Kumari, Safaa; Oyeniran, Kehinde A; Vernière, Christian; Filloux, Denis; Roumagnac, Philippe; Lefeuvre, Pierre; Ribeiro, Simone G; Kraberger, Simona P; Martin, Darren P; Varsani, ArvindThe family Cactaceae comprises a diverse group of typically succulent plants that are native to the American continent but have been introduced to nearly all other continents, predominantly for ornamental purposes. Despite their economic, cultural, and ecological importance, very little research has been conducted on the viral community that infects them. We previously identified a highly divergent geminivirus that is the first known to infect cacti. Recent research efforts in non-cultivated and asymptomatic plants have shown that the diversity of this viral family has been under-sampled. As a consequence, little is known about the effects and interactions of geminiviruses in many plants, such as cacti. With the objective to expand knowledge on the diversity of geminiviruses infecting cacti, we used previously acquired high-throughput sequencing results to search for viral sequences using BLASTx against a viral RefSeq protein database. We identified two additional sequences with similarity to geminiviruses, for which we designed abutting primers and recovered full-length genomes. From 42 cacti and five scale insects, we derived 42 complete genome sequences of a novel geminivirus species that we have tentatively named Opuntia virus 2 (OpV2) and 32 genomes of an Opuntia-infecting becurtovirus (which is a new strain of the spinach curly top Arizona virus species). Interspecies recombination analysis of the OpV2 group revealed several recombinant regions, in some cases spanning half of the genome. Phylogenetic analysis demonstrated that OpV2 is a novel geminivirus more closely related to viruses of the genus Curtovirus, which was further supported by the detection of three recombination events between curtoviruses and OpV2. Both OpV2 and Opuntia becurtoviruses were identified in mixed infections, which also included the previously characterized Opuntia virus 1. Viral quantification of the co-infected cactus plants compared with single infections did not show any clear trend in viral dynamics that might be associated with the mixed infections. Using experimental Rhizobium-mediated inoculations, we found that the initial accumulation of OpV2 is facilitated by co-infection with OpV1. This study shows that the diversity of geminiviruses that infect cacti is under-sampled and that cacti harbor diverse geminiviruses. The detection of the Opuntia becurtoviruses suggests spill-over events between viruses of cultivated species and native vegetation. The threat this poses to cacti needs to be further investigated.