• English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
  • Communities & Collections
  • Browse OpenUCT
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
  1. Home
  2. Browse by Author

Browsing by Author "Umeh, Obinna"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Open Access
    The influence of structure formation on the evolution of the universe
    (2013) Umeh, Obinna; Clarkson, Chris; Ellis, GFR
    The next generation of telescopes will usher in a new era of precision cosmology capable of determining key parameters of a cosmological model to percent level and beyond. For this to be effective, the theoretical model must be understood to at least the same level of precision. A range of subtle physical spacetime effcts remain to be explored theoretically, for example, the effect of backreaction on cosmological observables. A good understanding of this effect is paramount given that it is a consequence of any space-time theory of gravity. We provide a comprehensive study of this effect from the perspective of geometric averaging on a hyper-surface and averaging on the celestial sphere. We concentrate on Friedmann-Lemaitre-Robertson-Walker spacetime with small perturbation up to non-linear order . This enables us to quantify by how much this effect could change the standard model interpretation of the universe. We study in great detail key parameters of the standard model, Hubble rate, deceleration parameter and area distance.
  • Loading...
    Thumbnail Image
    Item
    Open Access
    A study of holographic superconductors
    (2009) Umeh, Obinna; Murugan, Jeffrey
    The proposal that the physics of quantum critical phase transition in strongly coupled condensed matter systems can be described by a gravitational theory within the frame work of gauge/gravity correspondence is investigated more extensively for s-wave superconductors. We consider a gravitational theory with a black hole solution in anti de Sitter spacetime, coupled to an Abelian-Higgs system in (d + 1)-dimensions. A wide range of negative mass squared for the scalar field that satisfied the Brietenlolmer-Freedman stability bound and the unitarity bound are considered in the probe limit. The dependence of the some of the physical quantities on the scaling dimensions of the dual condensates were thoroughly investigated. We observe that the holographic superconductors can be consistently classified into two, based on the scaling dimensions and the charge of the dual condensates. Holographic superconductors of dimension λ- exhibit features of type II superconductors while those of dimension λ+ show features of type 1. The validity of this classification was confirmed by solving the bulk equations of motion perturbatively near the quantum critical point in order to calculate the superconducting characteristic lengths at a fixed charge q. The results show that there is a critical scaling dimension beyond which a holographic superconductor behave as type I and below this value it is a type II. The properties of holographic superconductors presented in this report are in qualitative agreement with the Ginzburg-Landau theory.
UCT Libraries logo

Contact us

Jill Claassen

Manager: Scholarly Communication & Publishing

Email: openuct@uct.ac.za

+27 (0)21 650 1263

  • Open Access @ UCT

    • OpenUCT LibGuide
    • Open Access Policy
    • Open Scholarship at UCT
    • OpenUCT FAQs
  • UCT Publishing Platforms

    • UCT Open Access Journals
    • UCT Open Access Monographs
    • UCT Press Open Access Books
    • Zivahub - Open Data UCT
  • Site Usage

    • Cookie settings
    • Privacy policy
    • End User Agreement
    • Send Feedback

DSpace software copyright © 2002-2025 LYRASIS