Browsing by Author "Tongo, Marcel"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemOpen AccessCharacterization of HIV-1 gag and nef in Cameroon: further evidence of extreme diversity at the origin of the HIV-1 group M epidemic(BioMed Central Ltd, 2013) Tongo, Marcel; Martin, Darren; Zembe, Lycias; Mpoudi-Ngole, Eitel; Williamson, Carolyn; Burgers, WendyBACKGROUND: Cameroon, in west central Africa, has an extraordinary degree of HIV diversity, presenting a major challenge for the development of an effective HIV vaccine. Given the continuing need to closely monitor the emergence of new HIV variants in the country, we analyzed HIV-1 genetic diversity in 59 plasma samples from HIV-infected Cameroonian blood donors. Full length HIV gag and nef sequences were generated and phylogenetic analyses were performed. FINDINGS: All gag and nef sequences clustered within HIV-1M. Circulating recombinant form CRF02_AG predominated, accounting for 50% of the studied infections, followed by clade G (11%), clade D and CRF37_cpx (4% each), and clades A, F, CRF01_AE and CRF36_cpx (2% each). In addition, 22% of the studied viruses apparently had nef and gag genes from viruses belonging to different clades, with the majority (8/10) having either a nef or gag gene derived from CRF02_AG. Interestingly, five gag sequences (10%) and three (5%) nef sequences were neither obviously recombinant nor easily classifiable into any of the known HIV-1M clades. CONCLUSION: This suggests the widespread existence of highly divergent HIV lineages in Cameroon. While the genetic complexity of the Cameroonian HIV-1 epidemic has potentially serious implications for the design of biomedical interventions, detailed analyses of divergent Cameroonian HIV-1M lineages could be crucial for dissecting the earliest evolutionary steps in the emergence of HIV-1M.
- ItemOpen AccessElucidation of Early Evolution of HIV-1 Group M in the Congo Basin Using Computational Methods(2021-04-02) Tongo, Marcel; Martin, Darren P; Dorfman, Jeffrey RThe Congo Basin region is believed to be the site of the cross-species transmission event that yielded HIV-1 group M (HIV-1M). It is thus likely that the virus has been present and evolving in the region since that cross-species transmission. As HIV-1M was only discovered in the early 1980s, our directly observed record of the epidemic is largely limited to the past four decades. Nevertheless, by exploiting the genetic relatedness of contemporary HIV-1M sequences, phylogenetic methods provide a powerful framework for investigating simultaneously the evolutionary and epidemiologic history of the virus. Such an approach has been taken to find that the currently classified HIV-1 M subtypes and Circulating Recombinant Forms (CRFs) do not give a complete view of HIV-1 diversity. In addition, the currently identified major HIV-1M subtypes were likely genetically predisposed to becoming a major component of the present epidemic, even before the events that resulted in the global epidemic. Further efforts have identified statistically significant hot- and cold-spots of HIV-1M subtypes sequence inheritance in genomic regions of recombinant forms. In this review we provide ours and others recent findings on the emergence and spread of HIV-1M variants in the region, which have provided insights into the early evolution of this virus.
- ItemRestrictedHigh Degree of HIV-1 group M Genetic Diversity within Circulating Recombinant Forms: Insight into the Early Events of HIV-1M Evolution(American Society of Microbiology, 2016-03-15) Tongo, Marcel; Dorfman, Jeffrey Robert; Martin, Darren PatrickThe existence of various highly divergent HIV-1 lineages and of recombination-derived sequence tracts of indeterminate origin within established circulating recombinant forms (CRFs) strongly suggests that HIV-1 group M (HIV-1M) diversity is not fully represented under the current classification system. Here we used a fully exploratory screen for recombination on a set of 480 near-full-length genomes representing the full known diversity of HIV-1M. We decomposed recombinant sequences into their constituent parts and then used maximum-likelihood phylogenetic analyses of this mostly recombination-free data set to identify rare divergent sequence lineages that fall outside the major named HIV-1M taxonomic groupings. We found that many of the sequence fragments occurring within CRFs (including CRF04_cpx, CRF06_cpx, CRF11_cpx, CRF18_cpx, CRF25_cpx, CRF27_cpx, and CRF49_cpx) are in fact likely derived from divergent unclassified parental lineages that may predate the current subtypes, even though they are presently identified as derived from currently defined HIV-1M subtypes. Our evidence suggests that some of these CRFs are descended predominantly from what were or are major previously unidentified HIV-1M lineages that were likely epidemiologically relevant during the early stages of the HIV-1M epidemic. The restriction of these divergent lineages to the Congo basin suggests that they were less infectious and/or simply not present at the time and place of the initial migratory wave that triggered the global epidemic. IMPORTANCE HIV-1 group M (HIV-1M) likely spread to the rest of the world from the Congo basin in the mid-1900s (N. R. Faria et al., Science 346:56-61, 2014, http://dx.doi.org/10.1126/science.1256739) and is today the principal cause of the AIDS pandemic. Here, we show that large sequence fragments from several HIV-1M circulating recombinant forms (CRFs) are derived from divergent parental lineages that cannot reasonably be classified within the nine established HIV-1M subtypes. These lineages are likely to have been epidemiologically relevant in the Congo basin at the onset of the epidemic. Nonetheless, they appear not to have undergone the same explosive global spread as other HIV-1M subtypes, perhaps because they were less transmissible. Concerted efforts to characterize more of these divergent lineages could allow the accurate inference and chemical synthesis of epidemiologically key ancestral HIV-1M variants so as to directly test competing hypotheses relating to the viral genetic factors that enabled the present pandemic.