Browsing by Author "Todd, Simon W"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemOpen AccessCurrent status and impact (2004-2015) of indigenous ungulate herbivory on the vegetation of Sanbona Wildlife Reserve in the Little Karoo(2017) Vorster, Liesl; Todd, Simon W; Hoffmann, TimmGame farming is becoming more popular in southern Africa and the introduction of large indigenous ungulates into confined enclosed areas could alter plant communities and ecosystem processes. This is of particular concern in semi-arid rangelands of the Succulent Karoo where the evolutionary history of grazing is not clear and the compatibility of large herbivores in confined areas remains to be demonstrated. The establishment of Sanbona Wildlife Reserve, a 54 000 hectare private game reserve in the Little Karoo, which converted from livestock farming to game farming, allows an opportunity to study the vegetation dynamics in a confined plant-herbivore system. This study investigates the current community structure and the changes in the floral composition and vegetation structure of enclosed and comparable sites subjected to grazing by large herbivores after twelve years (2004-2015). It also determines the relative effect of grazing and rainfall on the observed patterns. Finally, the implications of these findings for management are discussed. Data from drop-point surveys in fenced (exclosure) and unfenced (grazed) plots in the dominant vegetation types as well as annual and seasonal rainfall totals, stocking rates of herbivores and annual game census information, were analysed. These were used in multivariate ordination techniques, regressions and linear mixed-effects models to determine the communities and their relationship with herbivory and rainfall over time and identify a set of indicator species. The annual game census information was used to determine areas of herbivore preference or 'hotspots' and for the identification of highly-utilised areas. Cluster analysis, using the flexible beta method in PC-Ord, was used to determine the current plant communities. Non-metric multidimensional scaling ordination (NMS) was used to determine the relationship of these communities with the environmental variables and illustrate the trajectories in floristic data. Species were also assigned to plant growth forms and examined as communities and growth form types. The Bray-Curtis distance measures were used to investigate the difference between each treatment over time, within each vegetation community and between treatments. Finally, the effects of rainfall and herbivory were examined using linear mixed-effects models of change over time vs the various potential determinants of change using lmer functions in R. Four communities were identified. These communities corresponded well with to the vegetation type descriptions for Western Little Karoo, Little Karoo Quartz Vygieveld and Renosterveld as described in the National Vegetation Map of Mucina and Rutherford (2006). However, the Western Little Karoo was too broad and two communities were recognised within this vegetation type. The finer scale mapping by Vlok et al. (2005) corresponded relatively well to these communities. Results showed an increase in species richness, abundance and cover over time, with the ungrazed plots experiencing more change than the plots exposed to grazing. Most growth forms exhibited an increase in cover, although low leaf succulents declined in both grazed and ungrazed plots. Medium evergreen shrubs declined in the exclosures and stem succulents declined in the grazed plots. The effects were found in both grazed and ungrazed treatments. In addition, many species which declined in abundance were unpalatable or toxic to herbivores. Because of this, the decline in cover of such species was not attributed to grazing, but was instead interpreted as being a response to other disturbance mechanisms, to competitive displacement and to rainfall events. The low stocking rates in the first five years of the study resulted in there being very little difference evident between the treatments. However, once stocking rates increased from 2008, both species richness and cover increased more rapidly in the ungrazed plots, compared to the grazed plots. An increase in palatable and unpalatable species was observed within both ungrazed and grazed plots indicating that grazing did not change the proportion of palatability classes. However, specific plots in the areas of high animal utilisation were more affected as indicated by the response of cover, species richness and palatable species in these specific plots. This suggests that the grazing pressure may be too high within those areas. The linear mixed-effect model supports the argument that grazing pressure is the dominant driver of the community change within grazed plots. Similarly, the results show that rainfall is the primary driver of the vegetation community in the absence of grazing. Timing, amount and intensity of rainfall can mask these impacts. Thus, the contribution of grazing to vegetation change can probably only be detected by tracking the trends over decades or longer. The use of indicators as a management tool is well documented. In order to identify indicators, a theoretical framework for determining indicators species in the different vegetation communities was created. This was based on the correlation between species abundance and sampling period in the different treatments, which identified species that have significantly increased or decreased over time as a result of the change in land use. Species identified as potential indicators were selected on the basis based on their abundance and ranged in lifespans and palatability. The indicators chosen need to be monitored into the future to confirm their utility as indicators. A small but significant difference between grazed and ungrazed plots suggest that herbivore impact is apparent. Identifying this trend indicates that the monitoring programme is providing a useful tool for assessing the impact of herbivores on an ongoing basis. The recovery process following the withdrawal of domestic livestock from Sanbona was much slower in the grazed plots than in the protected plots. Therefore, for the continued recovery of the vegetation to occur and for there to be a sustained increase in cover, active management of animal numbers needs to take place. The results from this study can contribute to future management decisions on the reserve and form a basis for future analyses.
- ItemOpen AccessEnvironmental change in Riemvasmaak, Northern Cape, South Africa twenty years after resettlement(2016) Fleury, Gabriela; Hoffman, Timm; Todd, Simon WThe 75,000 ha area of Riemvasmaak, located north of the Orange River within the Northern Cape Province, is an important case study with regard to land restitution and livestock impacts upon arid rangelands hypothesized to be at disequilibrium. As part of a 'black spot' removal program during apartheid, about 1,500 people from Riemvasmaak were forcibly moved off their land in 1974. With many returning to the area in January 1995, Riemvasmaak represented the first successful land restitution case in post-apartheid South Africa. This study follows up on a long-term environmental monitoring project set up in 1995 and revisited in 2005 and early 2015 to determine the impact of the returnees on the vegetation and ecology of the region. It builds upon the repeat photography methodology utilized by Hoffman et al. (1995) and Hoffman and Todd (2010) in order to provide a robust and accessible measure of change in the herbaceous and woody components of the vegetation. The percentage cover of herbaceous and woody vegetation was visually estimated in repeat photographs from 27 photo stations for the years 1995, 2005, and 2015. The results of a linear mixed-effects model suggest that herbaceous vegetation decreased significantly from 1995 to 2005 (p< 0.001) and increased significantly from 2005 to 2015 (p< 0.001) while woody cover did not change significantly from 1995-2015. There was no difference in these trends between the three landform units assessed (rivers, sandy pediments and rocky slopes). Linear regressions utilizing size class and density of individuals for Acacia erioloba (Vachellia erioloba) indicated that there had been little recruitment over the period 1995-2015 in comparison to the period prior to the initial survey in 1995. Fifteen face-to-face interviews with livestock owners, herders, and the local Agricultural Collective in 2015 outlined the socioeconomic and cultural changes that had occurred in Riemvasmaak since 1995. One such change, a directive issued by the Riemvasmaak Municipality in 2009, that ownership of livestock would no longer be allowed within Municipality boundaries, resulted in the removal of livestock from Riemvasmaak in the years directly before 2015 and corresponded temporally with the rise in herbaceous cover seen in 2015.
- ItemOpen AccessPatterns of plant species richness and diversity across two habitat types in the Upper Karoo, South Africa(2018) Petersen, Hana; Hoffman, Timm; Todd, Simon WThe Nama-Karoo biome is relatively understudied in terms of its baseline biodiversity. Apart from its rich agricultural land-use history, the region is also under pressure from the development of the Square Kilometre Array, an increased demand for cleaner energy from shale gas fracking and/or other renewable energy installations, and the overarching impacts of global climate change. A reliable baseline inventory of biodiversity for the region is essential if these impacts are to be monitored and managed effectively. The main aim of this study was to relate fine-scale patterns of plant diversity and community structure to broader-scale vegetation mapping in the Karoo regions. It also investigated the role of several environmental and climatic variables as drivers of species richness, relative cover, and growth form diversity in two habitat types (i.e. plains and rocky dolerite hillslopes), and along a longitudinal environmental gradient. A pairwise floristic survey approach was implemented, using modified Whittaker plots in each habitat type at 30 sites within the shale gas exploration area in the Upper Karoo bioregion. Data were collected on species richness, relative cover, and growth form diversity of the observed vegetation. Soil samples were collected from each Whittaker plot, and climate data were obtained by point sampling from raster layers using GIS. The results showed that mean species richness was significantly higher (p < 0.01) in slope habitats than in plains habitats across the environmental gradient. Trees and woody shrubs had significantly higher species richness (p < 0.001) and relative cover (p < 0.01) in slope habitats. Low woody shrubs comprised the greatest percentage of growth form diversity in both habitat types in terms of species richness and relative cover, and were the dominant growth form across the longitudinal gradient. At the arid western extent, leaf-succulent shrubs had slightly higher relative cover (~ 25%) in slope habitats compared to other growth forms, apart from low woody shrubs. In the central regions, perennial grasses were more abundant (25 – 60%) in slope habitats, while annual grasses were more abundant (25%) in plains habitats. At the more mesic eastern end of the longitudinal gradient, perennial grasses were dominant (> 50%) in plains habitats. Cluster analysis, based on species presence data in each habitat type, showed relatively strong correspondence between plant associations in slope habitats and their respective vegetation types as currently defined. These plant associations were spatially aggregated according to their position along the environmental gradient. Little to no correspondence was found between plant associations in plains habitats and their respective vegetation types. These plant associations were interspersed with each other when plotted spatially, and occurred in a repeating pattern in plains habitats across the study area. Multiple regression models indicated that a combination of climatic and environmental variables, and soil properties significantly predicted overall species richness and relative cover of the five dominant growth forms. Habitat type commonly emerged as a significant predictor for overall species richness and relative cover. Overall dissimilarity, and dissimilarity in the relative cover of five plant functional types between plains and slope habitats, were also predicted by a combination of climatic and environmental variables, and soil properties. These predictors varied greatly between the different response variables, suggesting that different plant functional types are influenced by different drivers, depending on the habitat in which they occur. Habitat heterogeneity, coupled with local and regional variation in prevailing climate and soils, has consistently emerged as an important driver of plant species richness and relative cover in global drylands research. Measuring richness and diversity within habitats requires a high sampling resolution in both plot size and number. This study has shown that sampling at the 0.1 ha scale (or larger) captures a representative sample of richness and diversity within a given habitat type in the Nama-Karoo biome, where low woody shrubs (< 60 cm tall) are the dominant growth form. In the current vegetation map of South Africa, the vegetation types for the Upper Karoo bioregion are coarse, and hence give the impression of homogeneity in what is in reality a relatively heterogenous landscape. Fine-scale baseline biodiversity data such as are presented in this study may improve the resolution of the existing vegetation map, as well as inform better conservation and management practices in economically important and biologically diverse rangelands in the Nama-Karoo biome, prior to future developments in the region.