Browsing by Author "Thomson, Jennifer A"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemRestrictedGenetic analysis of maize streak virus isolates from Uganda reveals widespread distribution of a recombinant variant.(Microbiology Society, 2007) Owor, Betty E; Martin, Darren P; Shepherd, Dionne N; Edema, Richard; Monjane, Ade´rito L; Rybicki, Edward P; Thomson, Jennifer A; Vasani, ArvindMaize streak virus (MSV) contributes significantly to the problem of extremely low African maize yields. Whilst a diverse range of MSV and MSV-like viruses are endemic in sub-Saharan Africa and neighbouring islands, only a single group of maize-adapted variants – MSV subtypes A1–A6 – causes severe enough disease in maize to influence yields substantially. In order to assist in designing effective strategies to control MSV in maize, a large survey covering 155 locations was conducted to assess the diversity, distribution and genetic characteristics of the Ugandan MSV-A population. PCR–restriction fragment-length polymorphism analyses of 391 virus isolates identified 49 genetic variants. Sixty-two full-genome sequences were determined, 52 of which were detectably recombinant. All but two recombinants contained predominantly MSV-A1-like sequences. Of the ten distinct recombination events observed, seven involved inter-MSV-A subtype recombination and three involved intra-MSV-A1 recombination. One of the intra-MSV-A1 recombinants, designated MSV-A1UgIII, accounted for .60 % of all MSV infections sampled throughout Uganda. Although recombination may be an important factor in the emergence of novel geminivirus variants, it is demonstrated that its characteristics in MSV are quite different from those observed in related African cassava-infecting geminivirus species.
- ItemRestrictedA novel stress-inducible antioxidant enzyme identified from the resurrection plant Xerophyta viscosa Baker.(Springer, 2002) Mowla, Shaheen B; Thomson, Jennifer A; Farrant, Jill; Mundree, Sagadevan GA cDNA corresponding to 1-Cys peroxiredoxin, an evolutionarily conserved thiol-specific antioxidant enzyme, was isolated from Xerophyta viscosa Baker, a resurrection plant indigenous to Southern Africa and belonging to the family Velloziaceae. The cDNA, designated XvPer1, contains an open reading frame that encodes a polypeptide of 219 residues with a predicted molecular weight of 24.2 kDa. The XvPer1 polypeptide shows significant sequence identity (approx. 70%) to other recently identified plant 1-Cys peroxiredoxins and relatively high levels of sequence similarity (approx. 40%) to non-plant 1-Cys peroxiredoxins. The XvPer1 cDNA contains a putative polyadenylation site. As for all 1-Cys peroxiredoxins identified to date, the amino acid sequence proposed to constitute the active site of the enzyme, PVCTTE, is highly conserved in XvPer1. It also contains a putative bipartite nuclear localization signal. Southern blot analysis revealed that there is a single copy of XvPer1 in the X. viscosa genome. All angiosperm 1-Cys peroxiredoxins described to date are seed-specific and absent in vegetative tissues even under stress conditions; therefore, XvPer1 is unique in that it is expressed in the vegetative tissues of X. viscosa. The XvPer1 transcript was absent in fully hydrated X. viscosa tissue but levels increased in tissues subjected to abiotic stresses such as dehydration, heat (42 °C), high light intensity (1,500 µmol photons m–2 s–1) and when treated with abscisic acid (100 µM ABA) and sodium chloride (100 mM NaCl). Western blot analyses correlated with the patterns of expression of XvPer1 transcripts under different stress conditions. Immunofluorescence analyses revealed that XvPer1 is localized in the nucleus of dehydrated X. viscosa leaf cells. These results suggest that XvPer1 is a stress-inducible gene, which may function to protect nucleic acids within the nucleus against oxidative injury.
- ItemRestrictedRestoration of native folding of single-stranded DNA sequences through reverse mutations: an indication of a new epigenetic mechanism(Elsevier, 2006) Shepherd, Dionne N; Martin, Darren P; Varsani, Arvind; Thomson, Jennifer A; Rybicki, Edward P; Klump, Horst HWe used in vivo (biological), in silico (computational structure prediction), and in vitro (model sequence folding) analyses of singlestranded DNA sequences to show that nucleic acid folding conservation is the selective principle behind a high-frequency single-nucleotide reversion observed in a three-nucleotide mutated motif of the Maize streak virus replication associated protein (Rep) gene. In silico and in vitro studies showed that the three-nucleotide mutation adversely aVected Rep nucleic acid folding, and that the single-nucleotide reversion [C(601)A] restored wild-type-like folding. In vivo support came from infecting maize with mutant viruses: those with Rep genes containing nucleotide changes predicted to restore a wild-type-like fold [A(601)/G(601)] preferentially accumulated over those predicted to fold diVerently [C(601)/T(601)], which frequently reverted to A(601) and displaced the original population. We propose that the selection of native nucleic acid folding is an epigenetic eVect, which might have broad implications in the evolution of plants and their viruses.
- ItemRestrictedSuccessful application of FTA Classic Card technology and use of bacteriophage phi29 DNA polymerase for large-scale field sampling and cloning of complete maize streak virus genomes(Elsevier, 2007) Owor, Betty E; Shepherd, Dionne N; Taylor, Nigel J; Edema, Richard; Monjane, Aderito L; Thomson, Jennifer A; Martin, Darren P; Varsani, ArvindLeaf samples from 155 maize streak virus (MSV)-infected maize plants were collected from 155 farmers’ fields in 23 districts in Uganda in May/June 2005 by leaf-pressing infected samples onto FTA® Classic Cards. Viral DNA was successfully extracted from cards stored at room temperature for 9 months. The diversity of 127 MSV isolates was analysed by PCR-generated RFLPs. Six representative isolates having different RFLP patterns and causing either severe, moderate or mild disease symptoms, were chosen for amplification from FTA cards by bacteriophage 29 DNA polymerase using the TempliPhiTM system. Full-length genomes were inserted into a cloning vector using a unique restriction enzyme site, and sequenced. The 1.3-kb PCR product amplified directly from FTA-eluted DNA and used for RFLP analysis was also cloned and sequenced. Comparison of cloned whole genome sequences with those of the original PCR products indicated that the correct virus genome had been cloned and that no errors were introduced by the 29 polymerase. This is the first successful large-scale application of FTA card technology to the field, and illustrates the ease with which large numbers of infected samples can be collected and stored for downstream molecular applications such as diversity analysis and cloning of potentially new virus genomes.