Browsing by Author "Silal, Sheetal P"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemOpen AccessEstimating the risk of declining funding for malaria in Ghana: the case for continued investment in the malaria response(2020-06-01) Shretta, Rima; Silal, Sheetal P; Malm, Keziah; Mohammed, Wahjib; Narh, Joel; Piccinini, Danielle; Bertram, Kathryn; Rockwood, Jessica; Lynch, MattBackground Ghana has made impressive progress against malaria, decreasing mortality and morbidity by over 50% between 2005 and 2015. These gains have been facilitated in part, due to increased financial commitment from government and donors. Total resources for malaria increased from less than USD 25 million in 2006 to over USD 100 million in 2011. However, the country still faces a high burden of disease and is at risk of declining external financing due to its strong economic growth and the consequential donor requirements for increased government contributions. The resulting financial gap will need to be met domestically. The purpose of this study was to provide economic evidence of the potential risks of withdrawing financing to shape an advocacy strategy for resource mobilization. Methods A compartmental transmission model was developed to estimate the impact of a range of malaria interventions on the transmission of Plasmodium falciparum malaria between 2018 and 2030. The model projected scenarios of common interventions that allowed the attainment of elimination and those that predicted transmission if interventions were withheld. The outputs of this model were used to generate costs and economic benefits of each option. Results Elimination was predicted using the package of interventions outlined in the national strategy, particularly increased net usage and improved case management. Malaria elimination in Ghana is predicted to cost USD 961 million between 2020 and 2029. Compared to the baseline, elimination is estimated to prevent 85.5 million cases, save 4468 lives, and avert USD 2.2 billion in health system expenditures. The economic gain was estimated at USD 32 billion in reduced health system expenditure, increased household prosperity and productivity gains. Through malaria elimination, Ghana can expect to see a 32-fold return on their investment. Reducing interventions, predicted an additional 38.2 clinical cases, 2500 deaths and additional economic losses of USD 14.1 billion. Conclusions Malaria elimination provides robust epidemiological and economic benefits, however, sustained financing is need to accelerate the gains in Ghana. Although government financing has increased in the past decade, the amount is less than 25% of the total malaria financing. The evidence generated by this study can be used to develop a robust domestic strategy to overcome the financial barriers to achieving malaria elimination in Ghana.
- ItemOpen AccessLocal level inequalities in the use of hospital-based maternal delivery in rural South Africa(2014-07-15) Silal, Sheetal P; Penn-Kekana, Loveday; Bärnighausen, Till; Schneider, HelenAbstract Background There is global concern with geographical and socio-economic inequalities in access to and use of maternal delivery services. Little is known, however, on how local-level socio-economic inequalities are related to the uptake of needed maternal health care. We conducted a study of relative socio-economic inequalities in use of hospital-based maternal delivery services within two rural sub-districts of South Africa. Methods We used both population-based surveillance and facility-based clinical record data to examine differences in the relative distribution of socio-economic status (SES), using a household assets index to measure wealth, among those needing maternal delivery services and those using them in the Bushbuckridge sub-district, Mpumalanga, and Hlabisa sub-district, Kwa-Zulu Natal. We compared the SES distributions in households with a birth in the previous year with the household SES distributions of representative samples of women who had delivered in hospitals in these two sub-districts. Results In both sub-districts, women in the lowest SES quintile were significantly under-represented in the hospital user population, relative to need for delivery services (8% in user population vs 21% in population in need; p < 0.001 in each sub-district). Exit interviews provided additional evidence on potential barriers to access, in particular the affordability constraints associated with hospital delivery. Conclusions The findings highlight the need for alternative strategies to make maternal delivery services accessible to the poorest women within overall poor communities and, in doing so, decrease socioeconomic inequalities in utilisation of maternal delivery services.
- ItemOpen AccessTowards malaria elimination in Mpumalanga, South Africa: a population-level mathematical modelling approach(BioMed Central, 2014-08-03) Silal, Sheetal P; Little, Francesca; Barnes, Karen I; White, Lisa JBackground: Mpumalanga in South Africa is committed to eliminating malaria by 2018 and efforts are increasing beyond that necessary for malaria control. Differential Equation models may be used to study the incidence and spread of disease with an important benefit being the ability to enact exogenous change on the system to predict impact without committing any real resources. The model is a deterministic non-linear ordinary differential equation representation of the dynamics of the human population. The model is fitted to weekly data of treated cases from 2002 to 2008, and then validated with data from 2009 to 2012. Elimination-focused interventions such as the scale-up of vector control, mass drug administration, a focused mass screen and treat campaign and foreign source reduction are applied to the model to assess their potential impact on transmission. Results: Scaling up vector control by 10% and 20% resulted in substantial predicted decreases in local infections with little impact on imported infections. Mass drug administration is a high impact but short-lived intervention with predicted decreases in local infections of less that one infection per year. However, transmission reverted to pre-intervention levels within three years. Focused mass screen and treat campaigns at border-entry points are predicted to result in a knock-on decrease in local infections through a reduction in the infectious reservoir. This knock-on decrease in local infections was also predicted to be achieved through foreign source reduction. Elimination was only predicted to be possible under the scenario of zero imported infections in Mpumalanga. Conclusions: A constant influx of imported infections show that vector control alone will not be able to eliminate local malaria as it is insufficient to interrupt transmission. Both mass interventions have a large and immediate impact. Yet in countries with a large migrant population, these interventions may fail due to the reintroduction of parasites and their impact may be short-lived. While all strategies (in isolation or combined) contributed to decreasing local infections, none was predicted to decrease local infections to zero. The number of imported infections highlights the importance of reducing imported infections at source, and a regional approach to malaria elimination.