• English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
  • Communities & Collections
  • Browse OpenUCT
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
  1. Home
  2. Browse by Author

Browsing by Author "Rom, William N"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Open Access
    Adenosine Deaminase Acting on RNA-1 (ADAR1) Inhibits HIV-1 Replication in Human Alveolar Macrophages
    (Public Library of Science, 2014) Weiden, Michael D; Hoshino, Satomi; Levy, David N; Li, Yonghua; Kumar, Rajnish; Burke, Sean A; Dawson, Rodney; Hioe, Catarina E; Borkowsky, William; Rom, William N; Hoshino, Yoshihiko
    While exploring the effects of aerosol IFN-γ treatment in HIV-1/tuberculosis co-infected patients, we observed A to G mutations in HIV-1 envelope sequences derived from bronchoalveolar lavage (BAL) of aerosol IFN-γ-treated patients and induction of adenosine deaminase acting on RNA 1 (ADAR1) in the BAL cells. IFN-γ induced ADAR1 expression in monocyte-derived macrophages (MDM) but not T cells. ADAR1 siRNA knockdown induced HIV-1 expression in BAL cells of four HIV-1 infected patients on antiretroviral therapy. Similar results were obtained in MDM that were HIV-1 infected in vitro . Over-expression of ADAR1 in transformed macrophages inhibited HIV-1 viral replication but not viral transcription measured by nuclear run-on, suggesting that ADAR1 acts post-transcriptionally. The A to G hyper-mutation pattern observed in ADAR1 over-expressing cells in vitro was similar to that found in the lungs of HIV-1 infected patients treated with aerosol IFN-γ suggesting the model accurately represented alveolar macrophages. Together, these results indicate that ADAR1 restricts HIV-1 replication post-transcriptionally in macrophages harboring HIV-1 provirus. ADAR1 may therefore contribute to viral latency in macrophages.
  • Loading...
    Thumbnail Image
    Item
    Open Access
    Increased production of IL-4 and IL-12p40 from bronchoalveolar lavage cells are biomarkers of Mycobacterium tuberculosis in the sputum
    (Public Library of Science, 2013) Nolan, Anna; Fajardo, Elaine; Huie, Maryann L; Condos, Rany; Pooran, Anil; Dawson, Rodney; Dheda, Keertan; Bateman, Eric; Rom, William N; Weiden, Michael D
    BACKGROUND: Tuberculosis (TB) causes 1.45 million deaths annually world wide, the majority of which occur in the developing world. Active TB disease represents immune failure to control latent infection from airborne spread. Acid-fast bacillus (AFB) seen on sputum smear is a biomarker for contagiousness. METHODS: We enrolled 73 tuberculosis patients with extensive infiltrates into a research study using bronchoalveolar lavage (BAL) to sample lung immune cells and assay BAL cell cytokine production. All patients had sputum culture demonstrating Mycobacterium tuberculosis and 59/73 (81%) had AFB identified by microscopy of the sputum. Compared with smear negative patients, smear positive patients at presentation had a higher proportion with smoking history, a higher proportion with temperature >38.5 0 C, higher BAL cells/ml, lower percent lymphocytes in BAL, higher IL-4 and IL-12p40 in BAL cell supernatants. There was no correlation between AFB smear and other BAL or serum cytokines. Increasing IL-4 was associated with BAL PMN and negatively associated with BAL lymphocytes. Each 10-fold increase in BAL IL-4 and IL-12p40 increased the odds of AFB smear positivity by 7.4 and 2.2-fold, respectively, in a multi-variable logistic model. CONCLUSION: Increasing IL-4 and IL-12p40 production by BAL cells are biomarkers for AFB in sputum of patients who present with radiographically advanced TB. They likely reflect less effective immune control of pathways for controlling TB, leading to patients with increased infectiousness.
UCT Libraries logo

Contact us

Jill Claassen

Manager: Scholarly Communication & Publishing

Email: openuct@uct.ac.za

+27 (0)21 650 1263

  • Open Access @ UCT

    • OpenUCT LibGuide
    • Open Access Policy
    • Open Scholarship at UCT
    • OpenUCT FAQs
  • UCT Publishing Platforms

    • UCT Open Access Journals
    • UCT Open Access Monographs
    • UCT Press Open Access Books
    • Zivahub - Open Data UCT
  • Site Usage

    • Cookie settings
    • Privacy policy
    • End User Agreement
    • Send Feedback

DSpace software copyright © 2002-2025 LYRASIS