Browsing by Author "Patrick, Sheila"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemOpen AccessAn AraC/XylS family transcriptional regulator homologue from Bacteroides fragilis is associated with cell survival following DNA damage(Oxford University Press, 2008) Casanueva, Ana I; Paul, Lynthia; Patrick, Sheila; Abratt, Valerie RA putative transcriptional regulator of the AraC/XylS family was identified in a genomic genebank of Bacteroides fragilis Bf-1, which partially relieved the sensitivity of Escherichia coli DNA repair mutants to the DNA-damaging agents, metronidazole and mitomycin C. A homologue of this gene with the same phenotype was identified as BF638R3281 in B. fragilis 638R. Transcription of BF638R3281 was constitutive with respect to exposure to sublethal doses of metronidazole. BF638R3281 was interrupted by single cross-over gene-specific insertion mutation, and the gene disruption was confirmed by PCR and DNAsequencing analysis. The mutant grew more slowly than the wild type, and the mutation rendered B. fragilis more sensitive to metronidazole and mitomycin C. This indicates that the BF638R3281 gene product plays a role in the survival of B. fragilis following DNA damage by these agents.
- ItemOpen AccessIdentification of a collagen type I adhesin of Bacteroides fragilis(Public Library of Science, 2014) Galvão, Bruna P G V; Weber, Brandon W; Rafudeen, Mohamed S; Ferreira, Eliane O; Patrick, Sheila; Abratt, Valerie RBacteroides fragilis is an opportunistic pathogen which can cause life threatening infections in humans and animals. The ability to adhere to components of the extracellular matrix, including collagen, is related to bacterial host colonisation. Collagen Far Western analysis of the B. fragilis outer membrane protein (OMP) fraction revealed the presence two collagen adhesin bands of ∼31 and ∼34 kDa. The collagen adhesins in the OMP fraction were separated and isolated by two-dimensional SDS-PAGE and also purified by collagen affinity chromatography. The collagen binding proteins isolated by both these independent methods were subjected to tandem mass spectroscopy for peptide identification and matched to a single hypothetical protein encoded by B. fragilis NCTC 9343 (BF0586), conserved in YCH46 (BF0662) and 638R (BF0633) and which is designated in this study as cbp1 (collagen binding protein). Functionality of the protein was confirmed by targeted insertional mutagenesis of the cbp1 gene in B. fragilis GSH18 which resulted in the specific loss of both the ∼31 kDa and the ∼34 kDa adhesin bands. Purified his-tagged Cbp1, expressed in a B. fragilis wild-type and a glycosylation deficient mutant, confirmed that the cbp1 gene encoded the observed collagen adhesin, and showed that the 34 kDa band represents a glycosylated version of the ∼31 kDa protein. Glycosylation did not appear to be required for binding collagen. This study is the first to report the presence of collagen type I adhesin proteins in B. fragilis and to functionally identify a gene encoding a collagen binding protein.