Browsing by Author "Oyekola, Oluwaseun O"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemRestrictedEffect of culture conditions on the competition between lactate oxidisers and fermenters in a biological sulfate reduction system(Elsevier, 2012) Oyekola, Oluwaseun O; Harrison, Susan T L; van Hille, Robert PKinetic constants (μmax and Ks) describing the predominance of lactate oxidation and fermentation were determined in chemostat cultures. The kinetics of sulfate reduction and lactate utilization were determined from 0.5 to 5 d residence times at feed sulfate concentrations of 1.0–10.0 g l−1. The kinetics of lactate fermentation in the absence of sulfate were investigated at residence times of 0.5–5 d. The lactate oxidizers (LO) were characterized by a μmax of 0.2 h−1 and Ks value of 0.6 g l−1 compared with a μmax of 0.3 h−1 and Ks of 3.3 g l−1 for the lactate fermenters (LF). Using mathematical models, it was shown that LO competed more effectively for lactate at low lactate concentrations (⩽5 g l−1) and high sulfide concentrations (0.5 g l−1). Lactate fermenters outcompeted the oxidizers under conditions of excess lactate (>5 g l−1) and low sulfide (0.014–0.088 g l−1).
- ItemRestrictedEffect of culture conditions on the competitive interaction between lactate oxidizers and fermenters in a biological sulfate reduction system(Elsevier, 2012) Oyekola, Oluwaseun O; Harrison, Susan T L; Van Hille, Robert PKinetic constants (lmax and Ks) describing the predominance of lactate oxidation and fermentation were determined in chemostat cultures. The kinetics of sulfate reduction and lactate utilization were determined from 0.5 to 5 d residence times at feed sulfate concentrations of 1.0–10.0 g l1 . The kinetics of lactate fermentation in the absence of sulfate were investigated at residence times of 0.5–5 d. The lactate oxidizers (LO) were characterized by a lmax of 0.2 h1 and Ks value of 0.6 g l1 compared with a lmax of 0.3 h1 and Ks of 3.3 g l1 for the lactate fermenters (LF). Using mathematical models, it was shown that LO competed more effectively for lactate at low lactate concentrations (65gl1 ) and high sulfide concentrations (0.5 g l1 ). Lactate fermenters outcompeted the oxidizers under conditions of excess lactate (>5 g l1 ) and low sulfide (0.014–0.088 g l1 ). 2011 E
- ItemRestrictedEffect of sulphate concentration on the community structure and activity of sulphate reducing bacteria(Trans Tech Publications, 2007) Oyekola, Oluwaseun O; van Hille, Rob; Harrison, Susan T LThis study investigated the effect of sulphate concentration and residence time on the performance of anaerobic sulphate reduction by a mixed sulphate reducing bacteria (SRB) culture using lactate as the sole carbon source and electron donor. The process perforrnance is related to the population structure of the microbial consortia and dominant metabolic reactions. Laboratory scale chemostat cultures at different residence times (1-4 d) and sulphate concentrations (1.0-10.0 glL) were employed. Lactate oxidation was prevalent at feed sulphate concentrations of 1.0 to 5.0 glL. A colresponding increase in the volumetric sulphate reduction rate with increasing volumetric loading rate was also observed at this range. However, at the higher feed sulphate concentration range (10.0-15.0 glL), sulphate inhibition, lactate fermentation and an increased microbial diversity were evident. At each feed concentration of sulphate in the range 5.0 to 15.0 glL, varying dilution rates resulted in significant shifts in dominant metabolic reactions. Sulphate concentration and residence time have significant effects on both the structure of the microbial population and kinetics of biological sulphate reduction.
- ItemRestrictedKinetic analysis of biological sulphate reduction using lactate as carbon source and electron donor: Effect of sulphate concentration.(Elsevier, 2010) Oyekola, Oluwaseun O; van Hille, Robert P; Harrison, Susan T LThis study investigated the effect of feed sulphate concentration on the kinetics of anaerobic sulphate reduction by a mixed SRB culture, using lactate as the sole carbon source and electron donor. Chemostat cultures were operated across a range of residence times (0.5–5 d) and feed sulphate concentrations (1.0–10.0 g l1 ). Similar phenomena were observed at feed sulphate concentrations of 1.0 and 10.0 g l1 with the volumetric sulphate reduction rate increasing linearly with increasing volumetric sulphate loading rate. These reactors were characterised by higher specific volumetric sulphate reduction rates with maximum values of 0.24 and 0.20 g h1 g1 . Contrastingly, the reactors fed with sulphate concentrations of 2.5 and 5.0 g l1 showed distinctly different trends in which the volumetric sulphate reduction rate passed through a maximum at the dilution rates of 0.014 and 0.021 h1 , respectively, followed by a decline with further increase in sulphate loading rate. The maximum specific volumetric sulphate reduction rates observed were 2–6-fold lower than those observed at 1.0 and 10.0 g l1 feed sulphate concentrations. Profiles of specific volumetric sulphate reduction rate and biomass concentration suggested a shift in lactate utilisation from oxidation to fermentation at high dilution rates, implying a change in the dominant components of the microbial consortium. The data suggest that population structure was influenced by lactate affinity and dissolved sulphide concentration. The trends observed were attributed to the greater ability of lactate oxidisers to scavenge lactate under limiting concentrations of the substrate and their greater resilience to dissolved sulphide species in comparison to lactate fermenters.