Browsing by Author "Olliaro, Piero"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemOpen AccessThe relationship between the haemoglobin concentration and the haematocrit in Plasmodium falciparum malaria(BioMed Central Ltd, 2008) Lee, Sue; Stepniewska, Kasia; Anstey, Nicholas; Ashley, Elizabeth; Barnes, Karen; Binh, Tran; D'Alessandro, Umberto; Day, Nicholas; de Vries, Peter; Dorsey, Grant; Guthmann, Jean-Paul; Mayxay, Mayfong; Newton, Paul; Nosten, Francois; Olliaro, PieroBACKGROUND:Malaria is a very important cause of anaemia in tropical countries. Anaemia is assessed either by measurement of the haematocrit or the haemoglobin concentration. For comparisons across studies, it is often necessary to derive one measure from the other. METHODS: Data on patients with slide-confirmed uncomplicated falciparum malaria were pooled from 85 antimalarial drug trials conducted in 25 different countries, to assess the haemoglobin/haematocrit relationship at different time points in malaria. Using a linear random effects model, a conversion equation for haematocrit was derived based on 3,254 measurements from various time points (ranging from day 0 to day 63) from 1,810 patients with simultaneous measurements of both parameters. Haemoglobin was also estimated from haematocrit with the commonly used threefold conversion. RESULTS: A good fit was obtained using Haematocrit = 5.62 + 2.60 * Haemoglobin. On average, haematocrit/3 levels were slightly higher than haemoglobin measurements with a mean difference (+/- SD) of -0.69 (+/- 1.3) for children under the age of 5 (n = 1,440 measurements from 449 patients). CONCLUSION: Based on this large data set, an accurate and robust conversion factor both in acute malaria and in convalescence was obtained. The commonly used threefold conversion is also valid.
- ItemOpen AccessWorld Antimalarial Resistance Network (WARN) IV: Clinical pharmacology(BioMed Central Ltd, 2007) Barnes, Karen; Lindegardh, Niklas; Ogundahunsi, Olumide; Olliaro, Piero; Plowe, Christopher; Randrianarivelojosia, Milijaona; Gbotosho, Grace; Watkins, William; Sibley, Carol; White, NicholasA World Antimalarial Resistance Network (WARN) database has the potential to improve the treatment of malaria, through informing current drug selection and use and providing a prompt warning of when treatment policies need changing. This manuscript outlines the contribution and structure of the clinical pharmacology component of this database. The determinants of treatment response are multi-factorial, but clearly providing adequate blood concentrations is pivotal to curing malaria. The ability of available antimalarial pharmacokinetic data to inform optimal dosing is constrained by the small number of patients studied, with even fewer (if any) studies conducted in the most vulnerable populations. There are even less data relating blood concentration data to the therapeutic response (pharmacodynamics). By pooling all available pharmacokinetic data, while paying careful attention to the analytical methodologies used, the limitations of small (and thus underpowered) individual studies may be overcome and factors that contribute to inter-individual variability in pharmacokinetic parameters defined. Key variables for pharmacokinetic studies are defined in terms of patient (or study subject) characteristics, the formulation and route of administration of the antimalarial studied, the sampling and assay methodology, and the approach taken to data analysis. Better defining these information needs and criteria of acceptability of pharmacokinetic-pharmacodynamic (PK-PD) studies should contribute to improving the quantity, relevance and quality of these studies. A better understanding of the pharmacokinetic properties of antimalarials and a more clear definition of what constitutes "therapeutic drug levels" would allow more precise use of the term "antimalarial resistance", as it would indicate when treatment failure is not caused by intrinsic parasite resistance but is instead the result of inadequate drug levels. The clinical pharmacology component of the WARN database can play a pivotal role in monitoring accurately for true antimalarial drug resistance and promptly correcting sub-optimal dosage regimens to prevent these contributing to the emergence and spread of antimalarial resistance.
- ItemOpen AccessWorld Antimalarial Resistance Network I: Clinical efficacy of antimalarial drugs(BioMed Central Ltd, 2007) Price, Ric; Dorsey, Grant; Ashley, Elizabeth; Barnes, Karen; Baird, J Kevin; d'Alessandro, Umberto; Guerin, Philippe; Laufer, Miriam; Naidoo, Inbarani; Nosten, Francois; Olliaro, Piero; Plowe, Christopher; Ringwald, Pascal; Sibley, Carol; StepniewskaThe proliferation of antimalarial drug trials in the last ten years provides the opportunity to launch a concerted global surveillance effort to monitor antimalarial drug efficacy. The diversity of clinical study designs and analytical methods undermines the current ability to achieve this. The proposed World Antimalarial Resistance Network (WARN) aims to establish a comprehensive clinical database from which standardised estimates of antimalarial efficacy can be derived and monitored over time from diverse geographical and endemic regions. The emphasis of this initiative is on five key variables which define the therapeutic response. Ensuring that these data are collected at the individual patient level in a consistent format will facilitate better data management and analytical practices, and ensure that clinical data can be readily collated and made amenable for pooled analyses. Such an approach, if widely adopted will permit accurate and timely recognition of trends in drug efficacy. This will guide not only appropriate interventions to deal with established multidrug resistant strains of malaria, but also facilitate prompt action when new strains of drug resistant plasmodia first emerge. A comprehensive global database incorporating the key determinants of the clinical response with in vitro, molecular and pharmacokinetic parameters will bring together relevant data on host, drug and parasite factors that are fundamental contributors to treatment efficacy. This resource will help guide rational drug policies that optimize antimalarial drug use, in the hope that the emergence and spread of resistance to new drugs can be, if not prevented, at least delayed.