Browsing by Author "Nutbeam, Tim"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemOpen AccessA comparison of the demographics, injury patterns and outcome data for patients injured in motor vehicle collisions who are trapped compared to those patients who are not trapped(2021-01-14) Nutbeam, Tim; Fenwick, Rob; Smith, Jason; Bouamra, Omar; Wallis, Lee; Stassen, WillemBackground Motor vehicle collisions (MVCs) are a common cause of major trauma and death. Following an MVC, up to 40% of patients will be trapped in their vehicle. Extrication methods are focused on the prevention of secondary spinal injury through movement minimisation and mitigation. This approach is time consuming and patients may have time-critical injuries. The purpose of this study is to describe the outcomes and injuries of those trapped following an MVC: this will help guide meaningful patient-focused interventions and future extrication strategies. Methods We undertook a retrospective database study using the Trauma Audit and Research Network database. Patients were included if they were admitted to an English hospital following an MVC from 2012 to 2018. Patients were excluded when their outcomes were not known or if they were secondary transfers. Results This analysis identified 426,135 cases of which 63,625 patients were included: 6983 trapped and 56,642 not trapped. Trapped patients had a higher mortality (8.9% vs 5.0%, p < 0.001). Spinal cord injuries were rare (0.71% of all extrications) but frequently (50.1%) associated with other severe injuries. Spinal cord injuries were more common in patients who were trapped (p < 0.001). Injury Severity Score (ISS) was higher in the trapped group 18 (IQR 10–29) vs 13 (IQR 9–22). Trapped patients had more deranged physiology with lower blood pressures, lower oxygen saturations and lower Glasgow Coma Scale, GCS (all p < 0.001). Trapped patients had more significant injuries of the head chest, abdomen and spine (all p < 0.001) and an increased rate of pelvic injures with significant blood loss, blood loss from other areas or tension pneumothorax (all p < 0.001). Conclusion Trapped patients are more likely to die than those who are not trapped. The frequency of spinal cord injuries is low, accounting for < 0.7% of all patients extricated. Patients who are trapped are more likely to have time-critical injuries requiring intervention. Extrication takes time and when considering the frequency, type and severity of injuries reported here, the benefit of movement minimisation may be outweighed by the additional time taken. Improved extrication strategies should be developed which are evidence-based and allow for the expedient management of other life-threatening injuries.
- ItemOpen AccessThe role of cervical collars and verbal instructions in minimising spinal movement during self-extrication following a motor vehicle collision - a biomechanical study using healthy volunteers(2021-07-31) Nutbeam, Tim; Fenwick, Rob; May, Barbara; Stassen, Willem; Smith, Jason E; Wallis, Lee; Dayson, Mike; Shippen, JamesBackground Motor vehicle collisions account for 1.3 million deaths and 50 million serious injuries worldwide each year. However, the majority of people involved in such incidents are uninjured or have injuries which do not prevent them exiting the vehicle. Self-extrication is the process by which a casualty is instructed to leave their vehicle and completes this with minimal or no assistance. Self-extrication may offer a number of patient and system-wide benefits. The efficacy of routine cervical collar application for this group is unclear and previous studies have demonstrated inconsistent results. It is unknown whether scripted instructions given to casualties on how to exit the vehicle would offer any additional utility. The aim of this study was to evaluate the effect of cervical collars and instructions on spinal movements during self-extrication from a vehicle, using novel motion tracking technology. Methods Biomechanical data on extrications were collected using Inertial Measurement Units on 10 healthy volunteers. The different extrication types examined were: i) No instructions and no cervical collar, ii) No instructions, with cervical collar, iii) With instructions and no collar, and iv) With instructions and with collar. Measurements were recorded at the cervical and lumbar spine, and in the anteroposterior (AP) and lateral (LAT) planes. Total movement, mean, standard deviation and confidence intervals are reported for each extrication type. Results Data were recorded for 392 extrications. The smallest cervical spine movements were recorded when a collar was applied and no instructions were given: mean 6.9 mm AP and 4.4 mm LAT. This also produced the smallest movements at the lumbar spine with a mean of 122 mm AP and 72.5 mm LAT. The largest overall movements were seen in the cervical spine AP when no instructions and no collar were used (28.3 mm). For cervical spine lateral movements, no collar but with instructions produced the greatest movement (18.5 mm). For the lumbar spine, the greatest movement was recorded when instructions were given and no collar was used (153.5 mm AP, 101.1 mm LAT). Conclusions Across all participants, the most frequently occurring extrication method associated with the least movement was no instructions, with a cervical collar in situ.