Browsing by Author "Mutumi, Gregory L"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemOpen AccessGeographic variation in the phenotypes of two sibling horseshoe bats Rhinolophus simulator and R.swinnyi(2016) Mutumi, Gregory L; Jacobs, David S; Winker, HenningThe study of geographic variation and its causes in the phenotypes of animals elucidates how evolutionary processes generate biodiversity. This thesis attempts to uncouple the relative contributions of adaptive and neutral mechanisms to population divergence in African horseshoe bats (genus Rhinolophus). The two species were sampled from their distributional ranges within southern Africa and several morphometric and echolocation parameters were taken. The relative contributions of adaptation and drift were first tested (Chapter 2) using the Lande's model. It was hypothesised that adaptation would predominate in the diversification of the two horseshoe bats owing to the flight-echolocation and diet-echolocation adaptive complexes that intricately tie these two species to environmental conditions. Selection was also hypothesised to be stronger in Rhinolophus swinnyi because it uses higher frequency sound which is more sensitive to atmospheric conditions. The hypotheses were tested using a combination of soft tissue parameters (Chapter 2) and hard tissue parameters (Chapter 3), i.e., 3D scanned skulls analysed using 3D geometric morphometrics. To reconstruct the selective forces, linear mixed-effects models were used to regress climatic variables against echolocation call signals (Chapter 4) based on two hypotheses, the Sensory Drive and the James' Rule as a guide. The Lande's model (Chapter 2 and 3) showed that drift had a minimal effect to the variation of body parameters and echolocation and that selection was stronger on echolocation than on morphometric parameters. Additionally selection was differentially exerted across different localities and between the two species, making the relative roles of selection and drift context specific. Climatic variables (mean annual temperature and relative humidity) were inversely related to the variation in echolocation signals (Chapter 4) within each species. Body size was unrelated to the observed variation, which provided evidence that echolocation signals did not vary as a result of the body size/climate relationship proposed by James' Rule. Bats rely on both flight and echolocation to survive and reproduce, systems that have to track local habitats closely to perform optimally. Hence selection plays a pivotal role in their diversification.
- ItemOpen AccessSensory drive mediated by climatic gradients partially explains divergence in acoustic signals in two horseshoe bat species, Rhinolophus swinnyi and Rhinolophus simulator(Public Library of Science, 2016) Mutumi, Gregory L; Jacobs, David S; Winker, HenningGeographic variation can be an indicator of still poorly understood evolutionary processes such as adaptation and drift. Sensory systems used in communication play a key role in mate choice and species recognition. Habitat-mediated (i.e. adaptive) differences in communication signals may therefore lead to diversification. We investigated geographic variation in echolocation calls of African horseshoe bats, Rhinolophus simulator and R . swinnyi in the context of two adaptive hypotheses: 1) James' Rule and 2) the Sensory Drive Hypothesis. According to James' Rule body-size should vary in response to relative humidity and temperature so that divergence in call frequency may therefore be the result of climate-mediated variation in body size because of the correlation between body size and call frequency. The Sensory Drive Hypothesis proposes that call frequency is a response to climate-induced differences in atmospheric attenuation and predicts that increases in atmospheric attenuation selects for calls of lower frequency. We measured the morphology and resting call frequency (RF) of 111 R . simulator and 126 R . swinnyi individuals across their distributional range to test the above hypotheses. Contrary to the prediction of James' Rule, divergence in body size could not explain the variation in RF. Instead, acoustic divergence in RF was best predicted by latitude, geography and climate-induced differences in atmospheric attenuation, as predicted by the Sensory Drive Hypothesis. Although variation in RF was strongly influenced by temperature and humidity, other climatic variables (associated with latitude and altitude) as well as drift (as suggested by a positive correlation between call variation and geographic distance, especially in R . simulator ) may also play an important role.