• English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
  • Communities & Collections
  • Browse OpenUCT
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
  1. Home
  2. Browse by Author

Browsing by Author "Mustafa, Ali Mohammed"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Open Access
    Mixed-Language Arabic- English Information Retrieval
    (2013) Mustafa, Ali Mohammed; Suleman, Hussein
    This thesis attempts to address the problem of mixed querying in CLIR. It proposes mixed-language (language-aware) approaches in which mixed queries are used to retrieve most relevant documents, regardless of their languages. To achieve this goal, however, it is essential firstly to suppress the impact of most problems that are caused by the mixed-language feature in both queries and documents and which result in biasing the final ranked list. Therefore, a cross-lingual re-weighting model was developed. In this cross-lingual model, term frequency, document frequency and document length components in mixed queries are estimated and adjusted, regardless of languages, while at the same time the model considers the unique mixed-language features in queries and documents, such as co-occurring terms in two different languages. Furthermore, in mixed queries, non-technical terms (mostly those in non-English language) would likely overweight and skew the impact of those technical terms (mostly those in English) due to high document frequencies (and thus low weights) of the latter terms in their corresponding collection (mostly the English collection). Such phenomenon is caused by the dominance of the English language in scientific domains. Accordingly, this thesis also proposes reasonable re-weighted Inverse Document Frequency (IDF) so as to moderate the effect of overweighted terms in mixed queries.
UCT Libraries logo

Contact us

Jill Claassen

Manager: Scholarly Communication & Publishing

Email: openuct@uct.ac.za

+27 (0)21 650 1263

  • Open Access @ UCT

    • OpenUCT LibGuide
    • Open Access Policy
    • Open Scholarship at UCT
    • OpenUCT FAQs
  • UCT Publishing Platforms

    • UCT Open Access Journals
    • UCT Open Access Monographs
    • UCT Press Open Access Books
    • Zivahub - Open Data UCT
  • Site Usage

    • Cookie settings
    • Privacy policy
    • End User Agreement
    • Send Feedback

DSpace software copyright © 2002-2025 LYRASIS