### Browsing by Author "Muchabaiwa, Tinotenda Munashe"

Now showing 1 - 1 of 1

###### Results Per Page

###### Sort Options

- ItemOpen AccessApplications of Gaussian Process Regression to the Pricing and Hedging of Exotic Derivatives(2021) Muchabaiwa, Tinotenda Munashe; Ouwehand, PeterTraditional option pricing methods like Monte Carlo simulation can be time consuming when pricing and hedging exotic options under stochastic volatility models like the Heston model. The purpose of this research is to apply the Gaussian Process Regression (GPR) method to the pricing and hedging of exotic options under the Black-Scholes and Heston model. GPR is a supervised machine learning technique which makes use of a training set to train an algorithm so that it makes predictions. The training set is composed of the input vector X which is a n × p matrix and Y an n×1 vector of targets, where n is the number of training input vectors and p is the number of inputs. Using a GPR with a squared-exponential kernel tuned by maximising the log-likelihood, we established that this GPR works reasonably for pricing Barrier options and Asian options under the Heston model. As compared to the traditional method of Monte Carlo simulation, GPR technique is 2 000 times faster when pricing barrier option portfolios of 100 assets and 1 000 times faster computing a portfolio of Asian options. However, the squared-exponential GPR does not compute reliable hedging ratios under Heston model, the delta is reasonably accurate, but the vega is off.